Manufacturing a Bone Marrow-On-A-Chip Using Maskless Photolithography.
Bone Marrow Cells
/ physiology
Cell Differentiation
Cell Line
Coculture Techniques
Endothelial Cells
/ physiology
Equipment Design
Hematopoietic Stem Cells
/ physiology
Humans
Hydrogels
Lab-On-A-Chip Devices
Microfluidic Analytical Techniques
/ instrumentation
Osteoblasts
/ physiology
Phenotype
Stem Cell Niche
Tissue Engineering
/ instrumentation
3D cell culture
Bone marrow-on-a-chip
Hematopoietic stem cells
Hydrogel
Maskless photolithography
Microfabrication
Organ-on-a-chip
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
31
5
2021
pubmed:
1
6
2021
medline:
11
8
2021
Statut:
ppublish
Résumé
The bone marrow (BM) is a complex microenvironment in which hematopoietic stem and progenitor cells (HSPCs) interact with multiple cell types that regulate their quiescence, growth, and differentiation. These cells constitute local niches where HSPCs are confined and subjected to specific set of physical and biochemical cues. Endothelial cells forming the walls of blood capillaries have been shown to establish a vascular niche, whereas osteoblasts lying along the bone matrix organize the endosteal niche with distinct and specific impact on HSPC fate. The observation of the interaction of HSPCs with niche cells, and the investigation of its impact on HSPCs behavior in vivo is hindered by the opacity of the bone matrix. Therefore, various experimental strategies have been devised to reconstitute in vitro the interaction of HSPCs with distinct sets of BM-derived cells. In this chapter, we present a method to manufacture a pseudo BM-on-a-chip with separated compartments mimicking the vascular and the endosteal niches. Such a configuration with connected but distant compartments allowed the investigation of the specific contribution of each niche to the regulation of HSPC behavior. We describe the microfabrication of the chip with a maskless photolithography method that allows the iterative improvement of the geometric design of the chip in order to optimize the adaptation of the multicellular architecture to the specific aim of the study. We also describe the loading and culture of the various cell types in each compartment.
Identifiants
pubmed: 34057729
doi: 10.1007/978-1-0716-1425-9_20
doi:
Substances chimiques
Hydrogels
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
263-278Références
Velten L, Haas SF, Raffel S et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19:271–281. https://doi.org/10.1038/ncb3493
doi: 10.1038/ncb3493
pubmed: 28319093
pmcid: 5496982
Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334. https://doi.org/10.1038/nature12984
doi: 10.1038/nature12984
pubmed: 24429631
pmcid: 4514480
Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20:303–320. https://doi.org/10.1038/s41580-019-0103-9
doi: 10.1038/s41580-019-0103-9
pubmed: 30745579
pmcid: 6483843
Sánchez-Aguilera A, Méndez-Ferrer S (2017) The hematopoietic stem-cell niche in health and leukemia. Cell Mol Life Sci 74:579–590. https://doi.org/10.1007/s00018-016-2306-y
doi: 10.1007/s00018-016-2306-y
pubmed: 27436341
Verovskaya EV, Dellorusso PV, Passegué E (2019) Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol Med 25:494–515. https://doi.org/10.1016/j.molmed.2019.04.006
doi: 10.1016/j.molmed.2019.04.006
pubmed: 31109796
pmcid: 7657013
Christodoulou C, Spencer JA, S-CA Y et al (2020) Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578:278–283. https://doi.org/10.1038/s41586-020-1971-z
doi: 10.1038/s41586-020-1971-z
pubmed: 32025033
pmcid: 7021587
Guezguez B, Campbell CJV, Boyd AL et al (2013) Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 13:175–189. https://doi.org/10.1016/j.stem.2013.06.015
doi: 10.1016/j.stem.2013.06.015
pubmed: 23910084
Höfer T, Busch K, Klapproth K et al (2016) Fate mapping and quantitation of hematopoiesis in vivo. Annu Rev Immunol 34:449–478. https://doi.org/10.1146/annurev-immunol-032414-112019
doi: 10.1146/annurev-immunol-032414-112019
pubmed: 27168243
Zhao M, Perry JM, Marshall H et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20:1321–1326. https://doi.org/10.1038/nm.3706
doi: 10.1038/nm.3706
pubmed: 25326798
Chow A, Huggins M, Ahmed J et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429–436. https://doi.org/10.1038/nm.3057
doi: 10.1038/nm.3057
pubmed: 23502962
pmcid: 3983996
Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441. https://doi.org/10.1038/nature08602
doi: 10.1038/nature08602
pubmed: 19940913
pmcid: 2908011
Motazedian A, Bruveris FF, Kumar SV et al (2020) Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 22:60–73. https://doi.org/10.1038/s41556-019-0445-8
doi: 10.1038/s41556-019-0445-8
pubmed: 31907413
Bessy T, Souquet B, Vianay B et al (2020) Hematopoietic progenitors polarize in contact with bone marrow stromal cells by engaging CXCR4 receptors. BioRxiv. https://doi.org/10.1101/2020.05.11.089292
Kim S, Lee H, Chung M et al (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500. https://doi.org/10.1039/c3lc41320a
doi: 10.1039/c3lc41320a
pubmed: 23440068
Nelson MR, Ghoshal D, Mejías JC et al (2019) A multi-niche microvascularized human bone-marrow-on-a-chip. bioRxiv 2019.12.15.876813. https://doi.org/10.1101/2019.12.15.876813
Biedzinski S, Faivre L, Vianay B et al (2019) Microtubules deform the nucleus and force chromatin reorganization during early differentiation of human hematopoietic stem cells. bioRxiv 763326. https://doi.org/10.1101/763326
Donaldson C, Denning-Kendall P, Bradley B et al (2001) The CD34+CD38neg population is significantly increased in haemopoietic cell expansion cultures in serum-free compared to serum-replete conditions: dissociation of phenotype and function. Bone Marrow Transplant 27:365–371. https://doi.org/10.1038/sj.bmt.1702810
doi: 10.1038/sj.bmt.1702810
pubmed: 11313665
Faivre L, Parietti V, Siñeriz F et al (2016) In vitro and in vivo evaluation of cord blood hematopoietic stem and progenitor cells amplified with glycosaminoglycan mimetic. Stem Cell Res Ther 7:3. https://doi.org/10.1186/s13287-015-0267-y
doi: 10.1186/s13287-015-0267-y
pubmed: 26742480
pmcid: 4705640