DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets.


Journal

Cellular oncology (Dordrecht)
ISSN: 2211-3436
Titre abrégé: Cell Oncol (Dordr)
Pays: Netherlands
ID NLM: 101552938

Informations de publication

Date de publication:
Oct 2021
Historique:
received: 21 12 2020
accepted: 17 05 2021
pubmed: 1 6 2021
medline: 8 2 2022
entrez: 31 5 2021
Statut: ppublish

Résumé

The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.

Sections du résumé

BACKGROUND BACKGROUND
The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells.
CONCLUSIONS CONCLUSIONS
In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.

Identifiants

pubmed: 34057732
doi: 10.1007/s13402-021-00613-0
pii: 10.1007/s13402-021-00613-0
doi:

Substances chimiques

Antineoplastic Agents, Alkylating 0
Temozolomide YF1K15M17Y

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

961-981

Informations de copyright

© 2021. Crown.

Références

Q.T. Ostrom, H. Gittleman, P. Farah, A. Ondracek, Y. Chen, Y. Wolinsky, N.E. Stroup, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro. Oncol. (2013). https://doi.org/10.1093/neuonc/not151
doi: 10.1093/neuonc/not151 pubmed: 24137015 pmcid: 3798196
D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella–Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016)
M.T.C. Poon, C.L.M. Sudlow, J.D. Figueroa, P.M. Brennan, Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-68011-4
doi: 10.1038/s41598-020-68011-4 pubmed: 33127999 pmcid: 7603316
M. Koshy, B.J. Mccarthy, Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neuroncol. 107, 207–212 (2014)
doi: 10.1007/s11060-011-0738-7
J. Loeffler, E. Alexander, F.H. Hochberg, P.Y. Wen, J.H. Morris, W.C. Schoene, R.L. Siddon, R.H. Morse, P.M. Black, Clinical patterns of failure following stereotactic interstitial irradiation for malignant gliomas. Int. J. Radiat. Oncol. Biol. Phys. 19, 1455–1462 (1990)
pubmed: 2262370 doi: 10.1016/0360-3016(90)90358-Q
M. Ropolo, A. Daga, F. Griffero, M. Foresta, G. Casartelli, A. Zunino, A. Poggi, E. Cappelli, G. Zona, R. Spaziante, G. Corte, G. Frosina, Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Mol. Cancer Res. 7, 383–392 (2009)
pubmed: 19276180 doi: 10.1158/1541-7786.MCR-08-0409
C.A. Clara, S.K.N. Marie, J.R.W. de Almeida, A. Wakamatsu, S.M. Oba-Shinjo, M. Uno, M. Neville, S. Rosemberg, Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma. Neuropathology 34, 343–352 (2014)
pubmed: 24612214
E.M. Ahmed, G. Bandopadhyay, B. Coyle, A. Grabowska, A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells. Cell. Oncol. 41, 319–328 (2018)
doi: 10.1007/s13402-018-0374-8
X. Ge, M.H. Pan, L. Wang, W. Li, C. Jiang, J. He, K. Abouzid, L.Z. Liu, Z. Shi, B.H. Jiang, Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 9, 1–16 (2018)
doi: 10.1038/s41419-018-1176-7
R. Alan Mitteer, Y. Wang, J. Shah, S. Gordon, M. Fager, P.P. Butter, H. Jun Kim, C. Guardiola-Salmeron, A. Carabe-Fernandez, Y. Fan, Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 5, 1–12 (2015)
doi: 10.1038/srep13961
J. Zhang, M.F.G. Stevens, T.D. Bradshaw, Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 5, 102–114 (2011)
V.L. Bull, Studies on the Mode of Cytotoxicity of Imidazotetraziones (Aston University, 1988)
B.J. Denny, R.T. Wheelhouse, M.F.G. Stevens, L.L.H. Tsang, J.A. Slack, NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33, 9045-9051 (1994)
H. Strobel, T. Baisch, R. Fitzel, K. Schilberg, M.D. Siegelin, G. Karpel-Massler, K.-M. Debatin, M.-A. Westhoff, Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 7, 69 (2019)
pmcid: 6783999 doi: 10.3390/biomedicines7030069
R.N. Trivedi, K.H. Almeida, J.L. Fornsaglio, S. Schamus, R.W. Sobol, The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res. 65, 6394–6400 (2005)
pubmed: 16024643 doi: 10.1158/0008-5472.CAN-05-0715
W.P. Roos, L.F.Z. Batista, S.C. Naumann, W. Wick, M. Weller, C.F.M. Menck, B. Kaina, Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 26, 186–197 (2007)
pubmed: 16819506 doi: 10.1038/sj.onc.1209785
Y. He, B. Kaina, Are there thresholds in glioblastoma cell death responses triggered by temozolomide? Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20071562
doi: 10.3390/ijms20071562 pubmed: 31906246 pmcid: 6982186
H. Erasimus, M. Gobin, S. Niclou, E. Van Dyck, DNA repair mechanisms and their clinical impact in glioblastoma. Mutat. Res. - Rev. Mutat. Res. 769, 19–35 (2016)
pubmed: 27543314 doi: 10.1016/j.mrrev.2016.05.005
B. Kaina, M. Christmann, DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair (Amst). 78, 128–141 (2019)
pubmed: 31039537 doi: 10.1016/j.dnarep.2019.04.007
C.-K. Park, J.E. Kim, J.Y. Kim, S.W. Song, J.W. Kim, S.H. Choi, T.M. Kim, S.-H. Lee, I.H. Kim, S.-H. Park, The changes in MGMT promoter methylation status in initial and recurrent glioblastomas. Transl. Oncol. 5, 393–397 (2012)
pubmed: 23066447 pmcid: 3468928 doi: 10.1593/tlo.12253
K.A. Van Nifterik, J. Van Den Berg, W.F. Van Der Meide, N. Ameziane, L.E. Wedekind, R.D.M. Steenbergen, S. Leenstra, M.V.M. Lafleur, B.J. Slotman, L.J.A. Stalpers, P. Sminia, Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br. J. Cancer 103, 29–35 (2010)
pubmed: 20517307 pmcid: 2905289 doi: 10.1038/sj.bjc.6605712
R. Stupp, M.E. Hegi, W.P. Mason, M.J. van den Bent, M.J. Taphoorn, R.C. Janzer, S.K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A.A. Brandes, J. Gijtenbeek, C. Marosi, C.J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J.G. Cairncross, R.O. Mirimanoff, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009)
doi: 10.1016/S1470-2045(09)70025-7 pubmed: 19269895
M.E. Hegi, A.-C. Diserens, T. Gorlia, M.-F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E.C. Bromberg, P. Hau, R.O. Mirimanoff, J.G. Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing and benefit from Temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005)
doi: 10.1056/NEJMoa043331 pubmed: 15758010
M.R. Gilbert, M. Wang, K.D. Aldape, R. Stupp, M.E. Hegi, K.A. Jaeckle, T.S. Armstrong, J.S. Wefel, M. Won, D.T. Blumenthal, A. Mahajan, C.J. Schultz, S. Erridge, B. Baumert, K.I. Hopkins, T. Tzuk-Shina, P.D. Brown, A. Chakravarti, W.J. Curran, M.P. Mehta, Dose-dense temozolomide for newly diagnosed glioblastoma: A randomized phase III clinical trial. J. Clin. Oncol. 31, 4085–4091 (2013)
pubmed: 24101040 pmcid: 3816958 doi: 10.1200/JCO.2013.49.6968
M.M. Binabaj, A. Bahrami, S. ShahidSales, M. Joodi, M. Joudi Mashhad, S.M. Hassanian, K. Anvari, A. Avan, The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J. Cell. Physiol. 233, 378–386 (2018)
pubmed: 28266716 doi: 10.1002/jcp.25896
K. Zhang, X.Q. Wang, B. Zhou, L. Zhang, The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: A meta-analysis. Fam. Cancer 12, 449–458 (2013)
pubmed: 23397067 doi: 10.1007/s10689-013-9607-1
A.L. Rivera, C.E. Pelloski, M.R. Gilbert, H. Colman, C. De La Cruz, E.P. Sulman, B.N. Bekele, K.D. Aldape, MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro. Oncol. 12, 116–121 (2010)
pubmed: 20150378 doi: 10.1093/neuonc/nop020
W. Wick, M. Platten, C. Meisner, J. Felsberg, G. Tabatabai, M. Simon, G. Nikkhah, K. Papsdorf, J.P. Steinbach, M. Sabel, S.E. Combs, J. Vesper, C. Braun, J. Meixensberger, R. Ketter, R. Mayer-Steinacker, G. Reifenberger, M. Weller, Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: The NOA-08 randomised, phase 3 trial. Lancet Oncol. 13, 707–715 (2012)
pubmed: 22578793 doi: 10.1016/S1470-2045(12)70164-X
A. Malmström, B.H. Grønberg, C. Marosi, R. Stupp, D. Frappaz, H. Schultz, U. Abacioglu, B. Tavelin, B. Lhermitte, M.E. Hegi, J. Rosell, R. Henriksson, Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 13, 916–926 (2012)
pubmed: 22877848 doi: 10.1016/S1470-2045(12)70265-6
J.L. McFaline-Figueroa, C.J. Braun, M. Stanciu, Z.D. Nagel, P. Mazzucato, D. Sangaraju, E. Cerniauskas, K. Barford, A. Vargas, Y. Chen, N. Tretyakova, J.A. Lees, M.T. Hemann, F.M. White, L.D. Samson, Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to Temozolomide. Cancer Res. 75, 3127–3138 (2015)
pubmed: 26025730 pmcid: 4526337 doi: 10.1158/0008-5472.CAN-14-3616
J. Stritzelberger, L. Distel, R. Buslei, R. Fietkau, F. Putz, Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine. Clin. Transl. Oncol. 20, 508–516 (2018)
pubmed: 28825189 doi: 10.1007/s12094-017-1743-x
M. Touat, Y.Y. Li, A.N. Boynton, L.F. Spurr, J.B. Iorgulescu, C.L. Bohrson, I. Cortes-Ciriano, C. Birzu, J.E. Geduldig, K. Pelton, M.J. Lim-Fat, S. Pal, R. Ferrer-Luna, S.H. Ramkissoon, F. Dubois, C. Bellamy, N. Currimjee, J. Bonardi, K. Qian, P. Ho, S. Malinowski, L. Taquet, R.E. Jones, A. Shetty, K.H. Chow, R. Sharaf, D. Pavlick, L.A. Albacker, N. Younan, C. Baldini, M. Verreault, M. Giry, E. Guillerm, S. Ammari, F. Beuvon, K. Mokhtari, A. Alentorn, C. Dehais, C. Houillier, F. Laigle-Donadey, D. Psimaras, E.Q. Lee, L. Nayak, J.R. McFaline-Figueroa, A. Carpentier, P. Cornu, L. Capelle, B. Mathon, J.S. Barnholtz-Sloan, A. Chakravarti, W.L. Bi, E.A. Chiocca, K.P. Fehnel, S. Alexandrescu, S.N. Chi, D. Haas-Kogan, T.T. Batchelor, G.M. Frampton, B.M. Alexander, R.Y. Huang, A.H. Ligon, F. Coulet, J.Y. Delattre, K. Hoang-Xuan, D.M. Meredith, S. Santagata, A. Duval, M. Sanson, A.D. Cherniack, P.Y. Wen, D.A. Reardon, A. Marabelle, P.J. Park, A. Idbaih, R. Beroukhim, P. Bandopadhayay, F. Bielle, and K. L. Ligon, Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 580, 517–523 (2020)
pubmed: 32322066 pmcid: 8235024 doi: 10.1038/s41586-020-2209-9
J. Felsberg, N. Thon, S. Eigenbrod, B. Hentschel, M.C. Sabel, M. Westphal, G. Schackert, F.W. Kreth, T. Pietsch, M. Löffler, M. Weller, G. Reifenberger, J.C. Tonn, Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int. J. Cancer 129, 659–670 (2011)
doi: 10.1002/ijc.26083 pubmed: 21425258
S. Indraccolo, G. Lombardi, M. Fassan, L. Pasqualini, S. Giunco, R. Marcato, A. Gasparini, C. Candiotto, S. Nalio, P. Fiduccia, G.N. Fanelli, A. Pambuku, A. Della Puppa, D. D’Avella, L. Bonaldi, M.P. Gardiman, R. Bertorelle, A. De Rossi, V. Zagonel, Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin. Cancer Res. 25, 1828–1837 (2019)
doi: 10.1158/1078-0432.CCR-18-1892 pubmed: 30514778
H. Kim, A.D. D’Andrea, Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26, 1393–1408 (2012)
pubmed: 22751496 pmcid: 3403008 doi: 10.1101/gad.195248.112
Z.D. Nagel, G.J. Kitange, S.K. Gupta, B.A. Joughin, I.A. Chaim, P. Mazzucato, D.A. Lauffenburger, J.N. Sarkaria, L.D. Samson, DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme. Cancer Res. 77, 198–206 (2017)
pubmed: 27793847 doi: 10.1158/0008-5472.CAN-16-1151
M.F. Goodman, R. Woodgate, D.N.A. Translesion polymerases. Cold Spring Harb. Perspect. Biol. (2013) https://doi.org/10.1101/cshperspect.a010363
I.S. Mohiuddin, M.H. Kang, DNA-PK as an emerging therapeutic target in cancer. Front. Oncol. (2019). https://doi.org/10.3389/fonc.2019.00635
doi: 10.3389/fonc.2019.00635 pubmed: 31380275 pmcid: 6650781
A.N. Blackford, S.P. Jackson, ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017)
pubmed: 28622525 doi: 10.1016/j.molcel.2017.05.015
M.F. Lavin, Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008)
pubmed: 18813293 doi: 10.1038/nrm2514
A. Bakr, C. Oing, S. Köcher, K. Borgmann, I. Dornreiter, C. Petersen, E. Dikomey, W.Y. Mansour, Involvement of ATM in homologous recombination after end resection and RAD51 nucleofilament formation. Nucleic Acids Res. 43, 3154–3166 (2015)
H. Zhao, J.L. Watkins, H. Piwnica-Worms, Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl. Acad. Sci. U. S. A. 99, 14795–14800 (2002)
C.Y. Peng, P.R. Graves, R.S. Thoma, Z. Wu, A.S. Shaw, H. Piwnica-Worms, Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25c on serine-216. Science 277, 1501–1505 (1997)
pubmed: 9278512 doi: 10.1126/science.277.5331.1501
L. Zou, S.J. Elledge, Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003)
pubmed: 12791985 doi: 10.1126/science.1083430
Y. Zhou, J.H. Lee, W. Jiang, J.L. Crowe, S. Zha, T.T. Paull, Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Mol. Cell 65, 91–104 (2017)
pubmed: 27939942 doi: 10.1016/j.molcel.2016.11.004
T. Stiff, S.A. Walker, K. Cerosaletti, A.A. Goodarzi, E. Petermann, P. Concannon, M. O’Driscoll, P.A. Jeggo, ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006)
pubmed: 17124492 pmcid: 1698893 doi: 10.1038/sj.emboj.7601446
X.Y. Zhou, X. Wang, H. Wang, D.J. Chen, G.C. Li, G. Iliakis, Y. Wang, Ku affects the ATM-dependent S phase checkpoint following ionizing radiation. Oncogene 21, 6377–6381 (2002)
pubmed: 12214278 doi: 10.1038/sj.onc.1205782
K.E. Adams, A.L. Medhurst, D.A. Dart, N.D. Lakin, Recruitment of ATR to sites of ionising radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25, 3894–3904 (2006)
pubmed: 16474843 pmcid: 1852851 doi: 10.1038/sj.onc.1209426
B.G. Ju, V.V. Lunyak, V. Perissi, I. Garcia-Bassets, D.W. Rose, C.K. Glass, M.G. Rosenfeld, A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006)
pubmed: 16794079 doi: 10.1126/science.1127196
N. Jette, S.P. Lees-Miller, The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog. Biophys. Mol. Biol. 117, 194–205 (2015)
pubmed: 25550082 doi: 10.1016/j.pbiomolbio.2014.12.003
B.L. Ruis, K.R. Fattah, E.A. Hendrickson, The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol. Cell. Biol. 28, 6182–6195 (2008)
pubmed: 18710952 pmcid: 2577426 doi: 10.1128/MCB.00355-08
M.A. Serrano, Z. Li, M. Dangeti, P. R. Musich, S. Patrick, M. Roginskaya, B.Cartwright, and Y. Zou, DNA-PK, ATM and ATR collaboratively regulate p53–RPA interaction to facilitate homologous recombination DNA repair. Oncogene 32, 2452–2462 (2013)
V. Kumar, F.W. Alt, V. Oksenych, Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair (Amst). 16, 11–22 (2014)
pubmed: 24674624 pmcid: 4017585 doi: 10.1016/j.dnarep.2014.01.010
E. Riballo, M. Kühne, N. Rief, A. Doherty, G.C.M. Smith, M.J. Recio, C. Reis, K. Dahm, A. Fricke, A. Krempler, A.R. Parker, S.P. Jackson, A. Gennery, P.A. Jeggo, M. Löbrich, A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004)
pubmed: 15574327 doi: 10.1016/j.molcel.2004.10.029
W. Jiang, J.L. Crowe, X. Liu, S. Nakajima, Y. Wang, C. Li, B.J. Lee, R.L. Dubois, C. Liu, X. Yu, L. Lan, S. Zha, Differential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining. Mol. Cell 58, 172–185 (2015)
pubmed: 25818648 pmcid: 4415111 doi: 10.1016/j.molcel.2015.02.024
S. Matsuoka, B.A. Ballif, A. Smogorzewska, E.R. McDonald, K.E. Hurov, J. Luo, C.E. Bakalarski, Z. Zhao, N. Solimini, Y. Lerenthal, Y. Shiloh, S.P. Gygi, S.J. Elledge, ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007)
pubmed: 17525332 doi: 10.1126/science.1140321
M. Gatei, K. Sloper, C. Sörensen, R. Syljuäsen, J. Falck, K. Hobson, K. Savage, J. Lukas, B.B. Zhou, J. Bartek, K.K. Khanna, Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J. Biol. Chem. 278, 14806–14811 (2003)
pubmed: 12588868 doi: 10.1074/jbc.M210862200
S. Matsuoka, M. Huang, S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998)
pubmed: 9836640 doi: 10.1126/science.282.5395.1893
M. Squatrito, C.W. Brennan, K. Helmy, J.T. Huse, J.H. Petrini, E.C. Holland, Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629 (2010)
pubmed: 21156285 doi: 10.1016/j.ccr.2010.10.034
C. Koschmann, A.A. Calinescu, F.J. Nunez, A. Mackay, J. Fazal-Salom, D. Thomas, F. Mendez, N. Kamran, M. Dzaman, L. Mulpuri, J. Krasinkiewicz, R. Doherty, R. Lemons, J.A. Brosnan-Cashman, Y. Li, S. Roh, L. Zhao, H. Appelman, D. Ferguson, V. Gorbunova, A. Meeker, C. Jones, P.R. Lowenstein, M.G. Castro, ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci. Transl. Med (2016). https://doi.org/10.1126/scitranslmed.aac8228
doi: 10.1126/scitranslmed.aac8228 pubmed: 26936505 pmcid: 5381643
L. Qi, H. quan Yu, Y. Zhang, L. juan Ding, D. Zhao, P. Lv, W. Wang, Y. Xu, A Comprehensive meta-analysis of genetic associations between key polymorphic loci in DNA repair genes and glioma risk. Mol. Neurobiol. 54, 1314–1325 (2017)
pubmed: 26843108 doi: 10.1007/s12035-016-9725-5
R.D. Carruthers, S.U. Ahmed, S. Ramachandran, K. Strathdee, K.M. Kurian, A. Hedley, N. Gomez-Roman, G. Kalna, M. Neilson, L. Gilmour, K.H. Stevenson, E.M. Hammond, A.J. Chalmers, Replication stress drives constitutive activation of the DNA damage response and radioresistance in glioblastoma stem-like cells. Cancer Res. 78, 5060–5071 (2018)
pubmed: 29976574 pmcid: 6128404 doi: 10.1158/0008-5472.CAN-18-0569
J. Bartkova, P. Hamerlik, M.-T. Stockhausen, J. Ehrmann, A. Hlobilkova, H. Laursen, O. Kalita, Z. Kolar, H.S. Poulsen, H. Broholm, J. Lukas, J. Bartek, Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29, 5095–5102 (2010)
pubmed: 20581868 doi: 10.1038/onc.2010.249
K.M. Turner, Y. Sun, P. Ji, K.J. Granberg, B. Bernard, L. Hu, D.E. Cogdell, X. Zhou, O. Yli-Harja, M. Nykter, I. Shmulevich, W.K.A. Yung, G.N. Fuller, W. Zhang, Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression. Proc. Natl. Acad. Sci. U. S. A. 112, 3421–3426 (2015)
Q. Xu, C. Hu, Y. Zhu, K. Wang, B. Lal, L. Li, J. Tang, S. Wei, G. Huang, S. Xia, S. Lv, J. Laterra, Y. Jiang, Y. Li, ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-damaging therapeutics. Cancer Lett. (2020). https://doi.org/10.1016/j.canlet.2020.01.011
doi: 10.1016/j.canlet.2020.01.011 pubmed: 33388371 pmcid: 8457774
A.C. Custódio, L.O. Almeida, G.R. Pinto, M.J. Santos, J.R. Almeida, C.A. Clara, J.A. Rey, C. Casartelli, Variation in DNA repair gene XRCC3 affects susceptibility to astrocytomas and glioblastomas. Genet. Mol. Res. 11, 332–339 (2012)
pubmed: 22370935 doi: 10.4238/2012.February.10.4
S. Franceschi, S. Tomei, C.M. Mazzanti, F. Lessi, P. Aretini, M.La Ferla, V. De Gregorio, F. Pasqualetti, K. Zavaglia, G. Bevilacqua, A.G. Naccarato, Association between RAD 51 rs1801320 and susceptibility to glioblastoma. J. Neurooncol. 126, 265–270 (2016)
pubmed: 26511493 doi: 10.1007/s11060-015-1974-z
J.F. de Sousa, R. Torrieri, R.B. Serafim, L.F.M. Di Cristofaro, F.D. Escanfella, R. Ribeiro, D.L. Zanette, M.L. Paçó-Larson, W.A. da Silva, D.P. da C. Tirapelli, L. Neder, C.G. Carlotti, V. Valente, Expression signatures of DNA repair genes correlate with survival prognosis of astrocytoma patients. Tumor Biol. (2017). https://doi.org/10.1177/1010428317694552
S.G. Boccard, S.V. Marand, S. Geraci, L. Pycroft, F.R. Berger, L.A. Pelletier, Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: A pre-clinical study. Oncotarget 6, 29456–29468 (2015)
pubmed: 26336131 pmcid: 4745739 doi: 10.18632/oncotarget.4909
S. Yip, J. Miao, D.P. Cahill, A.J. Iafrate, K. Aldape, C.L. Nutt, D.N. Louis, MSH6 mutations arise in glioblastomas during Temozolomide therapy and mediate Temozolomide resistance. Clin. Cancer Res. 15, 4622–4629 (2009)
pubmed: 19584161 pmcid: 2737355 doi: 10.1158/1078-0432.CCR-08-3012
D.P. Cahill, K.K. Levine, R.A. Betensky, P.J. Codd, C.A. Romany, L.B. Reavie, T.T. Batchelor, P.A. Futreal, M.R. Stratton, W.T. Curry, A.J. Iafrate, D.N. Louis, Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during Temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007)
pubmed: 17404084 pmcid: 2873832 doi: 10.1158/1078-0432.CCR-06-2149
M. Eich, W.P. Roos, T. Nikolova, B. Kaina, Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol. Cancer Ther. 12, 2529–2540 (2013)
pubmed: 23960094 doi: 10.1158/1535-7163.MCT-13-0136
S. Quiros, W.P. Roos, B. Kaina, Rad51 and BRCA2 - new molecular targets for sensitizing glioma cells to alkylating anticancer drugs. PLoS One (2011). https://doi.org/10.1371/journal.pone.0027183
doi: 10.1371/journal.pone.0027183 pubmed: 22073281 pmcid: 3206939
H.O. King, T. Brend, H.L. Payne, A. Wright, T.A. Ward, K. Patel, T. Egnuni, L.F. Stead, A. Patel, H. Wurdak, S.C. Short, RAD51 Is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports 8, 125–139 (2017)
pubmed: 28076755 pmcid: 5233453 doi: 10.1016/j.stemcr.2016.12.005
W. Zhuang, B. Li, L. Long, L. Chen, Q. Huang, Z.Q. Liang, Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res. 1371, 7–15 (2011)
pubmed: 21108935 doi: 10.1016/j.brainres.2010.11.044
A.S. Gustafsson, A. Abramenkovs, B. Stenerlöw, Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 769, 1–10 (2014)
doi: 10.1016/j.mrfmmm.2014.06.004
I.C. Sorribes, S.K. Handelman, H.V. Jain, Mitigating temozolomide resistance in glioblastoma via DNA damage-repair inhibition. J. R. Soc. Interface (2020). https://doi.org/10.1098/rsif.2019.0722
doi: 10.1098/rsif.2019.0722 pubmed: 31964274 pmcid: 7014791
T.T. Dang, J.C. Morales, Involvement of pola2 in double strand break repair and genotoxic stress. Int. J. Mol. Sci. 21, 1–9 (2020)
doi: 10.3390/ijms21124245
A.A. Patil, P. Sayal, M.L. Depondt, R.D. Beveridge, A. Roylance, D.H. Kriplani, K.N. Myers, A. Cox, D. Jellinek, M. Fernando, T.A. Carroll, S.J. Collis, FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents. Oncotarget 5, 6414–6424 (2014)
pubmed: 25071006 pmcid: 4171640 doi: 10.18632/oncotarget.2225
C.C. Chen, T. Taniguchi, A. D’Andrea, The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. J. Mol. Med. 85, 497–509 (2007)
pubmed: 17221219 doi: 10.1007/s00109-006-0153-2
A.C.L. Bostian, L. Maddukuri, M.R. Reed, T. Savenka, J.H. Hartman, L. Davis, D.L. Pouncey, G.P. Miller, R.L. Eoff, Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells. Chem. Res. Toxicol. 29, 101–108 (2016)
pubmed: 26651356 doi: 10.1021/acs.chemrestox.5b00452
H. Pedersen, E.A.A. Obara, K.J. Elbæk, K. Vitting-Serup, P. Hamerlik, Replication protein a (RPA) mediates radio-resistance of glioblastoma cancer stem-like cells. Int. J. Mol. Sci. (2020). https://doi.org/10.3390/ijms21051588
doi: 10.3390/ijms21051588 pubmed: 33143232 pmcid: 7663119
S. Fosmark, S. Hellwege, R.H. Dahlrot, K.L. Jensen, H. Derand, J. Lohse, M.D. Sørensen, S. Hansen, and B. W. Kristensen, APNG as a prognostic marker in patients with glioblastoma. PLoS One (2017). https://doi.org/10.1371/journal.pone.0178693
doi: 10.1371/journal.pone.0178693 pubmed: 28662073 pmcid: 5490991
V. Valente, R.B. Serafim, L.C. de Oliveira, F.S. Adorni, R. Torrieri, D.P. da Cunha Tirapelli, E.M. Espreafico, S.M. Oba-Shinjo, S.K.N. Marie, M.L. Paçó-Larson, C.G. Carlotti, Modulation of HJURP (Holliday Junction-Recognizing Protein) levels is correlated with glioblastoma cells survival. PLoS One 8, e62200 (2013)
pubmed: 23638004 pmcid: 3636219 doi: 10.1371/journal.pone.0062200
R.D. Rasmussen, M.K. Gajjar, L. Tuckova, K.E. Jensen, A. Maya-Mendoza, C.B. Holst, K. Møllgaard, J.S. Rasmussen, J. Brennum, J. Bartek, M. Syrucek, E. Sedlakova, K.K. Andersen, M.H. Frederiksen, P. Hamerlik, BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13398
doi: 10.1038/ncomms13398 pubmed: 27845766 pmcid: 5116074
C. Perry, D. Agarwal, T.M.A. Abdel-Fatah, A. Lourdusamy, R. Grundy, D.T. Auer, D. Walker, R. Lakhani, I.S. Scott, S. Chan, G. Ball, S. Madhusudan, Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era. Oncotarget 5, 5764–5781 (2014)
pubmed: 25026297 pmcid: 4170616 doi: 10.18632/oncotarget.2180
S. Kun, Q. Duan, G. Liu, J.M. Lu, Prognostic value of DNA repair genes based on stratification of glioblastomas. Oncotarget 8, 58222–58230 (2017)
pubmed: 28938550 pmcid: 5601646 doi: 10.18632/oncotarget.17452
F.J. Romano, E. Guadagno, D. Solari, G. Borrelli, S. Pignatiello, P. Cappabianca, and M. Del Basso De Caro, ATM and p53 combined analysis predicts survival in glioblastoma multiforme patients: A clinicopathologic study. J. Cell. Biochem. 119, 4867–4877 (2018)
pubmed: 29369420 doi: 10.1002/jcb.26699
J. Bartek, J. Bartkova, J. Lukas, DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007)
pubmed: 18066090 doi: 10.1038/sj.onc.1210881
B. Zhao, J. Ye, B. Li, Q. Ma, G. Su, R. Han, DNA repair gene XRCC3 Thr241Met polymorphism and glioma risk: a meta-analysis. Int. J. Clin. Exp. Med. 6, 438–443 (2013)
pubmed: 23844267 pmcid: 3703114
K. Yoshimoto, M. Mizoguchi, N. Hata, H. Murata, R. Hatae, T. Amano, A. Nakamizo, T. Sasaki, Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma. Front. Oncol (2012). https://doi.org/10.3389/fonc.2012.00186
doi: 10.3389/fonc.2012.00186 pubmed: 23227453 pmcid: 3514620
C. Peng, Z. Chen, S. Wang, H.W. Wang, W. Qiu, L. Zhao, R. Xu, H. Luo, Y. Chen, D. Chen, Y. You, N. Liu, H. Wang, The error-prone DNA polymerase k promotes temozolomide resistance in glioblastoma through Rad17-dependent activation of ATR-Chk1 signaling. Cancer Res. 76, 2340–2353 (2016)
pubmed: 26960975 doi: 10.1158/0008-5472.CAN-15-1884
B. Auffinger, A.L. Tobias, Y. Han, G. Lee, D. Guo, M. Dey, M.S. Lesniak, A.U. Ahmed, Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 21, 1119–1131 (2014)
pubmed: 24608791 pmcid: 4207480 doi: 10.1038/cdd.2014.31
N. Gomez-Roman, M.Y. Chong, S.K. Chahal, S.P. Caragher, M.R. Jackson, K.H. Stevenson, S.A. Dongre, A.J. Chalmers, Radiation responses of 2D and 3D glioblastoma cells: A novel, 3D-specific radioprotective role of VEGF/Akt signaling through functional activation of NHEJ. Mol. Cancer Ther. 19, 575–589 (2020)
pubmed: 31672763 doi: 10.1158/1535-7163.MCT-18-1320
D. Garnier, B. Meehan, T. Kislinger, P. Daniel, A. Sinha, B. Abdulkarim, I. Nakano, J. Rak, Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro. Oncol. 20, 236–248 (2018)
pubmed: 29016925 doi: 10.1093/neuonc/nox142
G. Shenouda, L. Souhami, K. Petrecca, S. Owen, V. Panet-Raymond, M.C. Guiot, A.G. Corredor, B. Abdulkarim, A phase 2 trial of neoadjuvant temozolomide followed by hypofractionated accelerated radiation therapy with concurrent and adjuvant temozolomide for patients with glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 97, 487–494 (2017)
M. Gobin, P.V. Nazarov, R. Warta, M. Timmer, G. Reifenberger, J. Felsberg, L. Vallar, A.J. Chalmers, C.C. Herold-Mende, R. Goldbrunner, S.P. Niclou, E. Van Dyck, A DNA repair and cell-cycle gene expression signature in primary and recurrent glioblastoma: Prognostic value and clinical implications. Cancer Res. 79, 1226–1238 (2019)
pubmed: 30674534 doi: 10.1158/0008-5472.CAN-18-2076
C.R. Timme, B.H. Rath, J.W. O’Neill, K. Camphausen, P.J. Tofilon, The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown In Vitro and as orthotopic xenografts. Mol. Cancer Ther. 17, 1207–1216 (2018)
A. Nadkarni, M. Shrivastav, A.C. Mladek, P.M. Schwingler, P.T. Grogan, J. Chen, J.N. Sarkaria, ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J. Neurooncol. 110, 349–357 (2012)
pubmed: 23054561 pmcid: 3535329 doi: 10.1007/s11060-012-0979-0
K.M. Foote, J.W.M. Nissink, T. McGuire, P. Turner, S. Guichard, J.W.T. Yates, A. Lau, K. Blades, D. Heathcote, R. Odedra, G. Wilkinson, Z. Wilson, C.M. Wood, P.J. Jewsbury, Discovery and characterization of AZD6738, a potent inhibitor of Ataxia Telangiectasia mutated and Rad3 Related (ATR) Kinase with application as an anticancer agent. J. Med. Chem. 61, 9889–9907 (2018)
pubmed: 30346772 doi: 10.1021/acs.jmedchem.8b01187
L. Mei, J. Zhang, K. He, J. Zhang, Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: Where we stand. J Hematol Oncol 12, 43 (2019)
pubmed: 31018854 pmcid: 6482552 doi: 10.1186/s13045-019-0733-6
M.H. Jin, D.Y. Oh, ATM in DNA repair in cancer. Pharmacol. Ther. 203, 107391 (2019)
pubmed: 31299316 doi: 10.1016/j.pharmthera.2019.07.002
I.S. Mohiuddin, M.H. Kang, DNA-PK as an emerging therapeutic target in cancer. Front. Oncol. 9, 635 (2019)
pubmed: 31380275 pmcid: 6650781 doi: 10.3389/fonc.2019.00635
F.T. Zenke, A. Zimmermann, C. Sirrenberg, H. Dahmen, V. Kirkin, U. Pehl, T. Grombacher, C. Wilm, T. Fuchss, C. Amendt, L.T. Vassilev, A. Blaukat, Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol. Cancer Ther. 19, 1091–1101 (2020)
pubmed: 32220971 doi: 10.1158/1535-7163.MCT-19-0734
A. Macieja, P. Kopa, G. Galita, E. Pastwa, I. Majsterek, T. Poplawski, Comparison of the effect of three different topoisomerase II inhibitors combined with cisplatin in human glioblastoma cells sensitized with double strand break repair inhibitors. Mol. Biol. Rep. 46, 3625–3636 (2019)
pubmed: 31020489 doi: 10.1007/s11033-019-04605-0
P. Kopa, A. Macieja, I. Gulbas, E. Pastwa, T. Poplawski, Inhibition of DNA-PK potentiates the synergistic effect of NK314 and etoposide combination on human glioblastoma cells. Mol. Biol. Rep. 47, 67–76 (2020)
pubmed: 31583565 doi: 10.1007/s11033-019-05105-x
N. Albarakati, T.M.A. Abdel-Fatah, R. Doherty, R. Russell, D. Agarwal, P. Moseley, C. Perry, A. Arora, N. Alsubhi, C. Seedhouse, E.A. Rakha, A. Green, G. Ball, S. Chan, C. Caldas, I.O. Ellis, S. Madhusudan, Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol. Oncol. 9, 204–217 (2015)
pubmed: 25205036 doi: 10.1016/j.molonc.2014.08.001
L.J. Eccles, A.C. Bell, S.N. Powell, Inhibition of non-homologous end joining in Fanconi Anemia cells results in rescue of survival after interstrand crosslinks but sensitization to replication associated double-strand breaks. DNA Repair (Amst). 64, 1–9 (2018)
pubmed: 29459202 pmcid: 6054796 doi: 10.1016/j.dnarep.2018.02.003
B.P. Nutley, N.F. Smith, A. Hayes, L.R. Kelland, L. Brunton, B.T. Golding, G.C.M. Smith, N.M.B. Martin, P. Workman, F.I. Raynaud, Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Br. J. Cancer 93, 1011–1018 (2005)
pubmed: 16249792 pmcid: 2361671 doi: 10.1038/sj.bjc.6602823
P. Peddi, C.W. Loftin, J.S. Dickey, J.M. Hair, K.J. Burns, K. Aziz, D.C. Francisco, M.I. Panayiotidis, O.A. Sedelnikova, W.M. Bonner, T.A. Winters, A.G. Georgakilas, DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic. Biol. Med. 48, 1435–1443 (2010)
pubmed: 20193758 pmcid: 2901171 doi: 10.1016/j.freeradbiomed.2010.02.033
A.O. Fontana, M.A. Augsburger, N. Grosse, M. Guckenberger, A.J. Lomax, A.A. Sartori, M.N. Pruschy, Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother. Oncol. 116, 374–380 (2015)
Y. Liu, L. Zhang, Y. Liu, C. Sun, H. Zhang, G. Miao, C.X. Di, X. Zhou, R. Zhou, Z. Wang, DNA-PKcs deficiency inhibits glioblastoma cell-derived angiogenesis after ionizing radiation. J. Cell. Physiol. 230, 1094–1103 (2015)
pubmed: 25294801 doi: 10.1002/jcp.24841
R.L. Gurung, H.K. Lim, S. Venkatesan, P.S.W. Lee, M.P. Hande, Targeting DNA-PKcs and telomerase in brain tumour cells. Mol. Cancer (2014). https://doi.org/10.1186/1476-4598-13-232
doi: 10.1186/1476-4598-13-232 pubmed: 25307264 pmcid: 4213508
B. Mukherjee, B. McEllin, C.V. Camacho, N. Tomimatsu, S. Sirasanagandala, S. Nannepaga, K.J. Hatanpaa, B. Mickey, C. Madden, E. Maher, D.A. Boothman, F. Furnari, W.K. Cavenee, R.M. Bachoo, S. Burma, EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res. 69, 4252–4259 (2009)
pubmed: 19435898 pmcid: 2694953 doi: 10.1158/0008-5472.CAN-08-4853
D. Boucher, R. Hoover, Y. Wang, Y. Gu, D. Newsome, P. Ford, C. Moody, V. Damagnez, R. Arimoto, S. Hillier, M. Wood, W. Markland, B. Eustace, K. Cottrell, M. Penney, B. Furey, K. Tanner, J. Maxwell, P. Charifson, Abstract 3716: Potent radiation enhancement with VX-984, a selective DNA-PKcs inhibitor for the treatment of NSCLC, Cancer Res. (2016). https://doi.org/10.1158/1538-7445.AM2016-3716
K. Bergman, S.M. Irtenkauf, L.A. Hasselbach, C. Mueller, E. Petricoin, H. Raymon, T. Mikkelsen, A.C. Decarvalho, Abstract 1755: TORK/DNA-PK inhibitor CC-115 is effective as a single agent in a subset of glioblastoma patient-derived cancer stem cells and xenografts and potentiates temozolomide therapy, Exp. Mol. Ther. (2015). https://doi.org/10.1158/1538-7445.AM2015-1755
T. Tsuji, L.M. Sapinoso, T. Tran, B. Gaffney, L. Wong, S. Sankar, H.K. Raymon, D.S. Mortensen, S. Xu, CC-115, a dual inhibitor of mTOR kinase and DNA-PK, blocks DNA damage repair pathways and selectively inhibits ATM-deficient cell growth in vitro. Oncotarget 8, 74688–74702 (2017)
P. Munster, M. Mita, A. Mahipal, J. Nemunaitis, C. Massard, T. Mikkelsen, C. Cruz, L. Paz-Ares, M. Hidalgo, D. Rathkopf, G. Blumenschein, D.C. Smith, B. Eichhorst, T. Cloughesy, E.H. Filvaroff, S. Li, H. Raymon, H. de Haan, K. Hege, J.C. Bendell, First-in-human phase i study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Manag. Res. 11, 10463–10476 (2019)
pubmed: 31853198 pmcid: 6916675 doi: 10.2147/CMAR.S208720
R. Carruthers, S.U. Ahmed, K. Strathdee, N. Gomez-Roman, E. Amoah-Buahin, C. Watts, A.J. Chalmers, Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol. Oncol. 9, 192–203 (2015)
pubmed: 25205037 doi: 10.1016/j.molonc.2014.08.003
A.J. Chalmers, E.M. Ruff, C. Martindale, N. Lovegrove, S.C. Short, Cytotoxic effects of Temozolomide and radiation are additive- and schedule-dependent. Int. J. Radiat. Oncol. Biol. Phys. 75, 1511–1519 (2009)
pubmed: 19931733 doi: 10.1016/j.ijrobp.2009.07.1703
T. Zhang, Y. Shen, Y. Chen, J.T. Hsieh, Z. Kong, The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect. Int. J. Radiat. Biol. 91, 368–378 (2015)
pubmed: 25585815 doi: 10.3109/09553002.2015.1001531
S.E. Golding, E. Rosenberg, N. Valerie, I. Hussaini, M. Frigerio, X.F. Cockcroft, W.Y. Chong, M. Hummersone, L. Rigoreau, K.A. Menear, M.J. O’Connor, L.F. Povirk, T. van Meter, K. Valerie, Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther. 8, 2894–2902 (2009)
pubmed: 19808981 pmcid: 2761990 doi: 10.1158/1535-7163.MCT-09-0519
S.E. Golding, E. Rosenberg, B.R. Adams, S. Wignarajah, J.M. Beckta, M.J. O’Connor, K. Valerie, Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 11, 1167–1173 (2012)
pubmed: 22370485 pmcid: 3335919 doi: 10.4161/cc.11.6.19576
L. Biddlestone-Thorpe, M. Sajjad, E. Rosenberg, J.M. Beckta, N.C.K. Valerie, M. Tokarz, B.R. Adams, A.F. Wagner, A. Khalil, D. Gilfor, S.E. Golding, S. Deb, D.G. Temesi, A. Lau, M.J. O’Connor, K.S. Choe, L.F. Parada, S.K. Lim, N.D. Mukhopadhyay, K. Valerie, ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res. 19, 3189–3200 (2013)
pubmed: 23620409 pmcid: 3687028 doi: 10.1158/1078-0432.CCR-12-3408
A. Raso, D. Vecchio, E. Cappelli, M. Ropolo, A. Poggi, P. Nozza, R. Biassoni, S. Mascelli, V. Capra, F. Kalfas, P. Severi, G. Frosina, Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein. Brain Pathol. 22, 677–688 (2012)
pubmed: 22257080 pmcid: 8057648 doi: 10.1111/j.1750-3639.2012.00566.x
D. Vecchio, A. Daga, E. Carra, D. Marubbi, G. Baio, C.E. Neumaier, S. Vagge, R. Corvò, M. Pia Brisigotti, J. Louis Ravetti, A. Zunino, A. Poggi, S. Mascelli, A. Raso, and G. Frosina, Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer 135, 479–491 (2014)
pubmed: 24443327 doi: 10.1002/ijc.28680
N. McCabe, C. Hanna, S.M. Walker, D. Gonda, J. Li, K. Wikstrom, K.I. Savage, K.T. Butterworth, C. Chen, D.P. Harkin, K.M. Prise, R.D. Kennedy, Mechanistic rationale to target PTEN-deficient tumor cells with inhibitors of the DNA damage response kinase ATM. Cancer Res. 75, 2159–2165 (2015)
pubmed: 25870146 doi: 10.1158/0008-5472.CAN-14-3502
K. Guo, A.A. Shelat, R.K. Guy, M.B. Kastan, Development of a cell-based, high-throughput screening assay for ATM kinase inhibitors. J. Biomol. Screen. 19, 538–546 (2014)
pubmed: 24464432 doi: 10.1177/1087057113520325
J. Karlin, J. Allen, S.F. Ahmad, G. Hughes, V. Sheridan, R. Odedra, P. Farrington, E.B. Cadogan, L.C. Riches, A. Garcia-Trinidad, A.G. Thomason, B. Patel, J. Vincent, A. Lau, K.G. Pike, T.A. Hunt, A. Sule, N.C.K. Valerie, L. Biddlestone-Thorpe, J. Kahn, J.M. Beckta, N. Mukhopadhyay, B. Barlaam, S.L. Degorce, J. Kettle, N. Colclough, J. Wilson, A. Smith, I.P. Barrett, L. Zheng, T. Zhang, Y. Wang, K. Chen, M. Pass, S.T. Durant, K. Valerie, Orally bioavailable and blood–brain barrier-penetrating ATM inhibitor (AZ32) radiosensitizes intracranial gliomas in mice. Mol. Cancer Ther. 17, 1637–1647 (2018)
pubmed: 29769307 pmcid: 6072596 doi: 10.1158/1535-7163.MCT-17-0975
K.G. Pike, B. Barlaam, E. Cadogan, A. Campbell, Y. Chen, N. Colclough, N.L. Davies, C. De-Almeida, S.L. Degorce, M. Didelot, A. Dishington, R. Ducray, S.T. Durant, L.A. Hassall, J. Holmes, G.D. Hughes, P.A. Macfaul, K.R. Mulholland, T.M. McGuire, G. Ouvry, M. Pass, G. Robb, N. Stratton, Z. Wang, J. Wilson, B. Zhai, K. Zhao, N. Al-Huniti, The identification of potent, selective, and orally available inhibitors of Ataxia Telangiectasia mutated (ATM) kinase: The discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2 H-pyran-4-yl)-1,3-dihydro-2 H-imidazo[4,5- c]quinolin-2-one). J. Med. Chem. 61, 3823–3841 (2018)
pubmed: 29683659 doi: 10.1021/acs.jmedchem.7b01896
G.N. Jones, C. Rooney, N. Griffin, M. Roudier, L.A. Young, A. Garcia-Trinidad, G.D. Hughes, J.R. Whiteaker, Z. Wilson, R. Odedra, L. Zhao, R.G. Ivey, W.J. Howat, E.A. Harrington, J.C. Barrett, A. Ramos-Montoya, A. Lau, A.G. Paulovich, E.B. Cadogan, A.J. Pierce, pRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. Br. J. Cancer 119, 1233–1243 (2018)
pubmed: 30385821 pmcid: 6251026 doi: 10.1038/s41416-018-0286-4
S.T. Durant, L. Zheng, Y. Wang, K. Chen, L. Zhang, T. Zhang, Z. Yang, L. Riches, A.G. Trinidad, J.H.L. Fok, T. Hunt, K.G. Pike, J. Wilson, A. Smith, N. Colclough, V.P. Reddy, A. Sykes, A. Janefeldt, P. Johnström, K. Varnäs, A. Takano, S. Ling, J. Orme, J. Stott, C. Roberts, I. Barrett, G. Jones, M. Roudier, A. Pierce, J. Allen, J. Kahn, A. Sule, J. Karlin, A. Cronin, M. Chapman, K. Valerie, R. Illingworth, M. Pass, The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat1719
doi: 10.1126/sciadv.aat1719 pubmed: 29938225 pmcid: 6010333
J.F. Ning, M. Stanciu, M.R. Humphrey, J. Gorham, H. Wakimoto, R. Nishihara, J. Lees, L. Zou, R.L. Martuza, H. Wakimoto, S.D. Rabkin, Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nat. Commun. 10, 1–18 (2019)
doi: 10.1038/s41467-019-10993-5
C.B. Jackson, S.I. Noorbakhsh, R.K. Sundaram, A.N. Kalathil, S. Ganesa, L. Jia, H. Breslin, D.M. Burgenske, O. Gilad, J.N. Sarkaria, R.S. Bindra, Temozolomide sensitizes MGMT-deficient tumor cells to ATR inhibitors. Cancer Res. 79, 4331–4338 (2019)
pubmed: 31273061 pmcid: 6810597 doi: 10.1158/0008-5472.CAN-18-3394
C.T. Williamson, R. Miller, H.N. Pemberton, S.E. Jones, J. Campbell, A. Konde, N. Badham, R. Rafiq, R. Brough, A. Gulati, C.J. Ryan, J. Francis, P.B. Vermulen, A.R. Reynolds, P.M. Reaper, J.R. Pollard, A. Ashworth, C.J. Lord, ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 1–13 (2016)
doi: 10.1038/ncomms13837
J. Nikkilä, R. Kumar, J. Campbell, I. Brandsma, H.N. Pemberton, F. Wallberg, K. Nagy, I. Scheer, B.G. Vertessy, A.A. Serebrenik, V. Monni, R.S. Harris, S.J. Pettitt, A. Ashworth, C.J. Lord, Elevated APOBEC3B expression drives a kataegic-like mutation signature and replication stress-related therapeutic vulnerabilities in p53-defective cells. Br. J. Cancer 117, 113–123 (2017)
pubmed: 28535155 pmcid: 5520199 doi: 10.1038/bjc.2017.133
F.P. Vendetti, A. Lau, S. Schamus, T.P. Conrads, M.J. O’Connor, C.J. Bakkenist, The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 6, 44289–44305 (2015)
pubmed: 26517239 pmcid: 4792557 doi: 10.18632/oncotarget.6247
G. Fròsina, A. Profumo, D. Marubbi, D. Marcello, J.L. Ravetti, A. Daga, ATR kinase inhibitors NVP-BEZ235 and AZD6738 effectively penetrate the brain after systemic administration. Radiat. Oncol. 13, 1–7 (2018)
doi: 10.1186/s13014-018-1020-3
H. Kim, E. George, R.L. Ragland, S. Rafail, R. Zhang, C. Krepler, M.A. Morgan, M. Herlyn, E.J. Brown, F. Simpkins, Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017)
pubmed: 27993965 doi: 10.1158/1078-0432.CCR-16-2273
H.J. Kim, A. Min, S.A. Im, H. Jang, K.H. Lee, A. Lau, M. Lee, S. Kim, Y. Yang, J. Kim, T.Y. Kim, D.Y. Oh, J. Brown, M.J. O’Connor, Y.J. Bang, Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int. J. Cancer 140, 109–119 (2017)
pubmed: 27501113 doi: 10.1002/ijc.30373
M. Kwok, N. Davies, A. Agathanggelou, E. Smith, C. Oldreive, E. Petermann, G. Stewart, J. Brown, A. Lau, G. Pratt, H. Parry, M. Taylor, P. Moss, P. Hillmen, T. Stankovic, ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53-or ATM-defective chronic lymphocytic leukemia cells. Blood 127, 582–595 (2016)
pubmed: 26563132 doi: 10.1182/blood-2015-05-644872
N. Hustedt, A. Álvarez-Quilón, A. McEwan, J.Y. Yuan, T. Cho, L. Koob, T. Hart, D. Durocher, A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol. (2009). https://doi.org/10.1098/rsob.190156
C. Wang, G. Wang, X. Feng, P. Shepherd, J. Zhang, M. Tang, Z. Chen, M. Srivastava, M.E. McLaughlin, N.M. Navone, G.T. Hart, J. Chen, Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 38, 2451–2463 (2019)
pubmed: 30532030 doi: 10.1038/s41388-018-0606-4
Z. Qiu, P. Fa, T. Liu, C.B. Prasad, S. Ma, Z. Hong, E.R. Chan, H. Wang, Z. Li, K. He, Q.-E. Wang, T.M. Williams, C. Yan, S.T. Sizemore, G. Narla, J. Zhang, A genome-wide pooled shRNA screen identifies PPP2R2A as a predictive biomarker for the response to ATR and CHK1 inhibitors. Cancer Res. (2020).  https://doi.org/10.1158/0008-5472.can-20-0057
C.R. Dunlop, Y. Wallez, T.I. Johnson, S. Bernaldo De, S.T. Quirós Fernández, E.B. Durant, A. Cadogan, F.M. Lau, Richards, D.I. Jodrell, Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br. J. Cancer 123, 1424–1436 (2020)
E. Kotula, N. Berthault, C. Agrario, M.C. Lienafa, A. Simon, F. Dingli, D. Loew, V. Sibut, S. Saule, M. Dutreix, DNA-PKcs plays role in cancer metastasis through regulation of secreted proteins involved in migration and invasion. Cell Cycle 14, 1961–1972 (2015)
pubmed: 26017556 pmcid: 4614356 doi: 10.1080/15384101.2015.1026522
R. Rahman, L. Trippa, G. Fell, E. Lee, I. Arrillaga-Romany, M. Touat, C. McCluskey, J. Brunno, S. Gaffey, J. Drappatz, A. Lassman, E. Galanis, M. Ahluwalia, H. Colman, L. Nabors, J. Hepel, H. Elinzano, D. Schiff, U. Chukwueke, R. Beroukhim, L. Nayak, J. Mcfaline-Figueroa, T. Batchelor, M. Rinne, T. Kaley, C. Lu-Emerson, W.L. Bi, O. Arnaout, D. Haas-Kogan, S. Tanguturi, D. Cagney, A.A. Aizer, M. Welch, L. Doherty, M. Lavallee, B. Fisher-Longden, S. Dowling, J. Geduldig, F. Watkinson, S. Santagata, D. Meredith, E.A. Chiocca, D. Reardon, K. Ligon, B. Alexander, P. Wen, CTNI-11. CC-115 in newly diagnosed mgmt unmethylated glioblastoma in the individualized screening trial of innovative glioblastoma therapy (insight): a phase ii randomized bayesian adaptive platform trial. Neuro Oncol. 22, ii43–ii44 (2020)
doi: 10.1093/neuonc/noaa215.178 pmcid: 7650886
R. Shen, Q. Yang, Z. Liu, Y. Wang, X. Fan, L. Li, B. Hu, W. Xiao, M. Ma, W. Chen, X. Liu, W. Shi, A. Liu, The landscape of predictive biomarkers for ATR inhibition in Chinese solid-tumor patients. J. Clin. Oncol. 38, 3626–3626 (2020)
doi: 10.1200/JCO.2020.38.15_suppl.3626
T.A. Yap, M.G. Krebs, S. Postel-Vinay, Y.J. Bang, A. El-Khoueiry, W. Abida, K. Harrington, R. Sundar, L. Carter, E. Castanon-Alvarez, S.A. Im, A. Berges, M. Khan, C. Stephens, G. Ross, J.C. Soria, Phase I modular study of AZD6738, a novel oral, potent and selective ataxia telangiectasia Rad3-related (ATR) inhibitor in combination (combo) with carboplatin, olaparib or durvalumab in patients (pts) with advanced cancers. Eur. J. Cancer (2016). https://doi.org/10.1016/S0959-8049(16)32607-7
T.A. Yap, B. O’Carrigan, M.S. Penney, J.S. Lim, J.S. Brown, M.J. De Miguel Luken, N. Tunariu, R. Perez-Lopez, D.N. Rodrigues, R. Riisnaes, I. Figueiredo, S. Carreira, B. Hare, K. McDermott, S. Khalique, C.T. Williamson, R. Natrajan, S.J. Pettitt, C.J. Lord, U. Banerji, J. Pollard, J. Lopez, J.S. De Bono, Phase i trial of first-in-class ATR inhibitor M6620 (VX-970) as monotherapy or in combination with carboplatin in patients with advanced solid tumors. J. Clin. Oncol. 38, 3195–3204 (2020)
pubmed: 32568634 pmcid: 7499606 doi: 10.1200/JCO.19.02404
H.E.D. Southgate, L. Chen, D.A. Tweddle, N.J. Curtin, ATR inhibition potentiates parp inhibitor cytotoxicity in high risk neuroblastoma cell lines by multiple mechanisms. Cancers (Basel) (2020). https://doi.org/10.3390/cancers12051095
doi: 10.3390/cancers12051095
P. Mehdipour, F. Karami, F. Javan, M. Mehrazin, Linking ATM promoter methylation to cell cycle protein expression in brain tumor patients: Cellular molecular triangle correlation in ATM territory. Mol. Neurobiol. 52, 293–302 (2015)
pubmed: 25159481 doi: 10.1007/s12035-014-8864-9
K. Krüger, K. Geist, F. Stuhldreier, L. Schumacher, L. Blümel, M. Remke, S. Wesselborg, B. Stork, N. Klöcker, S. Bormann, W.P. Roos, S. Honnen, G. Fritz, Multiple DNA damage-dependent and DNA damage-independent stress responses define the outcome of ATR/Chk1 targeting in medulloblastoma cells. Cancer Lett. 430, 34–46 (2018)
pubmed: 29753759 doi: 10.1016/j.canlet.2018.05.011
C. Hao, I.F. Parney, W.H. Roa, J. Turner, K.C. Petruk, D.A. Ramsay, Cytokine and cytokine receptor mRNA expression in human glioblastomas: Evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol. 103, 171–178 (2002)
pubmed: 11810184 doi: 10.1007/s004010100448
K. Woroniecka, P. Chongsathidkiet, K. Rhodin, H. Kemeny, C. Dechant, S. Harrison Farber, A.A. Elsamadicy, X. Cui, S. Koyama, C. Jackson, L.J. Hansen, T.M. Johanns, L. Sanchez-Perez, V. Chandramohan, Y.R.A. Yu, D.D. Bigner, A. Giles, P. Healy, G. Dranoff, K.J. Weinhold, G.P. Dunn, P.E. Fecci, T-cell exhaustion signatures vary with tumor type and are severe in glioblastoma. Clin. Cancer Res. 24, 4175–4186 (2018)
pubmed: 29437767 pmcid: 6081269 doi: 10.1158/1078-0432.CCR-17-1846
S.L.N. Maas, E.R. Abels, L.L. Van De Haar, X. Zhang, L. Morsett, S. Sil, J. Guedes, P. Sen, S. Prabhakar, S.E. Hickman, C.P. Lai, D.T. Ting, X.O. Breakefield, M.L.D. Broekman, J. El Khoury, Glioblastoma hijacks microglial gene expression to support tumor growth. J. Neuroinflammation 17, 120 (2020)
pubmed: 32299465 pmcid: 7164149 doi: 10.1186/s12974-020-01797-2
A.P. Landry, M. Balas, S. Alli, J. Spears, Z. Zador, Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-76657-3
J.T. Yeung, R.L. Hamilton, K. Ohnishi, M. Ikeura, D.M. Potter, M.N. Nikiforova, S. Ferrone, R.I. Jakacki, I.F. Pollack, H. Okada, LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin. Cancer Res. 19, 1816–1826 (2013)
pubmed: 23401227 pmcid: 3618546 doi: 10.1158/1078-0432.CCR-12-2861
R. Eil, S.K. Vodnala, D. Clever, C.A. Klebanoff, M. Sukumar, J.H. Pan, D.C. Palmer, A. Gros, T.N. Yamamoto, S.J. Patel, G.C. Guittard, Z. Yu, V. Carbonaro, K. Okkenhaug, D.S. Schrump, W.M. Linehan, R. Roychoudhuri, N.P. Restifo, Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016)
pubmed: 27626381 pmcid: 5204372 doi: 10.1038/nature19364
S. Liu, Y. Wang, K. Xu, Z. Wang, X. Fan, C. Zhang, S. Li, X. Qiu, T. Jiang, Relationship between necrotic patterns in glioblastoma and patient survival: Fractal dimension and lacunarity analyses using magnetic resonance imaging. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-08862-6
A.M. Goodman, S. Kato, L. Bazhenova, S.P. Patel, G.M. Frampton, V. Miller, P.J. Stephens, G.A. Daniels, R. Kurzrock, Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017)
pubmed: 28835386 pmcid: 5670009 doi: 10.1158/1535-7163.MCT-17-0386
Y. Wu, J. Xu, C. Du, Y. Wu, D. Xia, W. Lv, J. Hu, The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers: A systematic review and meta-analysis. Front. Oncol (2019). https://doi.org/10.3389/fonc.2019.01161
doi: 10.3389/fonc.2019.01161 pubmed: 32117782 pmcid: 6933607
C. Richard, J.D. Fumet, S. Chevrier, V. Derangere, F. Ledys, A. Lagrange, L. Favier, B. Coudert, L. Arnould, C. Truntzer, R. Boidot, F. Ghiringhelli, Exome analysis reveals genomic markers associated with better efficacy of nivolumab in lung cancer patients. Clin. Cancer Res. 25, 957–966 (2019)
pubmed: 30154227 doi: 10.1158/1078-0432.CCR-18-1940
M. Yarchoan, A. Hopkins, E.M. Jaffee, Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017)
pubmed: 29262275 pmcid: 6549688 doi: 10.1056/NEJMc1713444
J.S. Brown, R. Sundar, J. Lopez, Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br. J. Cancer 118, 312–324 (2018)
pubmed: 29123260 doi: 10.1038/bjc.2017.376
N. Kim, G. Bozek, J.C. Lo, U. Storb, Different mismatch repair deficiencies all have the same effects on somatic hypermutation: Intact primary mechanism accompanied by secondary modifications. J. Exp. Med. 190, 21–30 (1999)
pubmed: 10429667 pmcid: 2195558 doi: 10.1084/jem.190.1.21
D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, L.A. Diaz, PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015)
pubmed: 26028255 pmcid: 4481136 doi: 10.1056/NEJMoa1500596
D.T. Le, J.N. Durham, K.N. Smith, H. Wang, B.R. Bartlett, L.K. Aulakh, S. Lu, H. Kemberling, C. Wilt, B.S. Luber, F. Wong, N.S. Azad, A.A. Rucki, D. Laheru, R. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, T.F. Greten, A.G. Duffy, K.K. Ciombor, A.D. Eyring, B.H. Lam, A. Joe, S.P. Kang, M. Holdhoff, L. Danilova, L. Cope, C. Meyer, S. Zhou, R.M. Goldberg, D.K. Armstrong, K.M. Bever, A.N. Fader, J. Taube, F. Housseau, D. Spetzler, N. Xiao, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, J.R. Eshleman, B. Vogelstein, R.A. Anders, L.A. Diaz, Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017)
pubmed: 28596308 pmcid: 5576142 doi: 10.1126/science.aan6733
G. Germano, S. Lamba, G. Rospo, L. Barault, A. Magri, F. Maione, M. Russo, G. Crisafulli, A. Bartolini, G. Lerda, G. Siravegna, B. Mussolin, R. Frapolli, M. Montone, F. Morano, F. De Braud, N. Amirouchene-Angelozzi, S. Marsoni, M. D’Incalci, A. Orlandi, E. Giraudo, A. Sartore-Bianchi, S. Siena, F. Pietrantonio, F. Di Nicolantonio, A. Bardelli, Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017)
L. Marcus, S.J. Lemery, P. Keegan, R. Pazdur, FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 25, 3753–3758 (2019)
pubmed: 30787022 doi: 10.1158/1078-0432.CCR-18-4070
U.S. Food, D. Admininistration, FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication | FDA (2017)
U.S. Food, D. Admininistration, FDA Approves Pembrolizumab for First-Line Treatment of MSI-H/DMMR Colorectal Cancer | FDA (2020)
J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D.I.S. Rosenbloom, S. Zairis, F. Abate, Z. Liu, O. Elliott, Y.J. Shin, J.K. Lee, I.H. Lee, W.Y. Park, M. Eoli, A.J. Blumberg, A. Lasorella, D.H. Nam, G. Finocchiaro, A. Iavarone, R. Rabadan, Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768–776 (2016)
pubmed: 27270107 pmcid: 5627776 doi: 10.1038/ng.3590
T.R. Hodges, M. Ott, J. Xiu, Z. Gatalica, J. Swensen, S. Zhou, J.T. Huse, J. de Groot, S. Li, W.W. Overwijk, D. Spetzler, A.B. Heimberger, Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro. Oncol. 19, 1047–1057 (2017)
pubmed: 28371827 pmcid: 5570198 doi: 10.1093/neuonc/nox026
F.P. Barthel, K.C. Johnson, F.S. Varn, A.D. Moskalik, G. Tanner, E. Kocakavuk, K.J. Anderson, O. Abiola, K. Aldape, K.D. Alfaro, D. Alpar, S.B. Amin, D.M. Ashley, P. Bandopadhayay, J.S. Barnholtz-Sloan, R. Beroukhim, C. Bock, P.K. Brastianos, D.J. Brat, A.R. Brodbelt, A.F. Bruns, K.R. Bulsara, A. Chakrabarty, A. Chakravarti, J.H. Chuang, E.B. Claus, E.J. Cochran, J. Connelly, J.F. Costello, G. Finocchiaro, M.N. Fletcher, P.J. French, H.K. Gan, M.R. Gilbert, P.V. Gould, M.R. Grimmer, A. Iavarone, A. Ismail, M.D. Jenkinson, M. Khasraw, H. Kim, M.C.M. Kouwenhoven, P.S. Laviolette, M. Li, P. Lichter, K.L. Ligon, A.K. Lowman, T.M. Malta, T. Mazor, K.L. McDonald, A.M. Molinaro, D.H. Nam, N. Nayyar, H.K. Ng, C.Y. Ngan, S.P. Niclou, J.M. Niers, H. Noushmehr, J. Noorbakhsh, D.R. Ormond, C.K. Park, L.M. Poisson, R. Rabadan, B. Radlwimmer, G. Rao, G. Reifenberger, J.K. Sa, M. Schuster, B.L. Shaw, S.C. Short, P.A. Sillevis Smitt, A.E. Sloan, M. Smits, H. Suzuki, G. Tabatabai, E.G. Van Meir, C. Watts, M. Weller, P. Wesseling, B.A. Westerman, G. Widhalm, A. Woehrer, W. K. A. Yung, G. Zadeh, J. T. Huse, J. F. de Groot, L. F. Stead, and R. G. W. Verhaak, Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019) 
pubmed: 31748746 pmcid: 6897368 doi: 10.1038/s41586-019-1775-1
Q. Wang, B. Hu, X. Hu, H. Kim, M. Squatrito, L. Scarpace, A.C. deCarvalho, S. Lyu, P. Li, Y. Li, F. Barthel, H.J. Cho, Y.H. Lin, N. Satani, E. Martinez-Ledesma, S. Zheng, E. Chang, C.E.G. Sauvé, A. Olar, Z.D. Lan, G. Finocchiaro, J.J. Phillips, M.S. Berger, K.R. Gabrusiewicz, G. Wang, E. Eskilsson, J. Hu, T. Mikkelsen, R.A. DePinho, F. Muller, A.B. Heimberger, E.P. Sulman, D.H. Nam, R.G.W. Verhaak, Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32, 42–56 (2017)
T.M. Johanns, C.A. Miller, I.G. Dorward, C. Tsien, E. Chang, A. Perry, R. Uppaluri, C. Ferguson, R.E. Schmidt, S. Dahiya, G. Ansstas, E.R. Mardis, G.P. Dunn, Immunogenomics of hypermutated glioblastoma: A patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 6, 1230–1236 (2016)
pubmed: 27683556 pmcid: 5140283 doi: 10.1158/2159-8290.CD-16-0575
E. Bouffet, V. Larouche, B.B. Campbell, D. Merico, R. de Borja, M. Aronson, C. Durno, J. Krueger, V. Cabric, V. Ramaswamy, N. Zhukova, G. Mason, R. Farah, S. Afzal, M. Yalon, G. Rechavi, V. Magimairajan, M.F. Walsh, S. Constantini, R. Dvir, R. Elhasid, A. Reddy, M. Osborn, M. Sullivan, J. Hansford, A. Dodgshun, N. Klauber-Demore, L. Peterson, S. Patel, S. Lindhorst, J. Atkinson, Z. Cohen, R. Laframboise, P. Dirks, M. Taylor, D. Malkin, S. Albrecht, R.W.R. Dudley, N. Jabado, C.E. Hawkins, A. Shlien, U. Tabori, Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016)
pubmed: 27001570 doi: 10.1200/JCO.2016.66.6552
V. Larouche, J. Atkinson, S. Albrecht, R. Laframboise, N. Jabado, U. Tabori, E. Bouffet, Sustained complete response of recurrent glioblastoma to combined checkpoint inhibition in a young patient with constitutional mismatch repair deficiency. Pediatr. Blood Cancer (2018). https://doi.org/10.1002/pbc.27389
doi: 10.1002/pbc.27389 pubmed: 30160041
H. Ahmad, C.E. Fadul, D. Schiff, B. Purow, Checkpoint inhibitor failure in hypermutated and mismatch repair-mutated recurrent high-grade gliomas. Neuro-Oncology Pract. 6, 424–427 (2019)
doi: 10.1093/nop/npz016
G. Lombardi, V. Barresi, S. Indraccolo, M. Simbolo, M. Fassan, S. Mandruzzato, M. Simonelli, M. Caccese, M. Pizzi, A. Fassina, M. Padovan, E. Masetto, M.P. Gardiman, M.G. Bonavina, M. Caffo, P. Persico, F. Chioffi, L. Denaro, A.P.D. Tos, A. Scarpa, V. Zagonel, Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: A monocentric, observational and prospective pilot study. Cancers (Basel). 12, 1–14 (2020)
doi: 10.3390/cancers12082283
R.M. Samstein, C.H. Lee, A.N. Shoushtari, M.D. Hellmann, R. Shen, Y.Y. Janjigian, D.A. Barron, A. Zehir, E.J. Jordan, A. Omuro, T.J. Kaley, S.M. Kendall, R.J. Motzer, A.A. Hakimi, M.H. Voss, P. Russo, J. Rosenberg, G. Iyer, B.H. Bochner, D.F. Bajorin, H.A. Al-Ahmadie, J.E. Chaft, C.M. Rudin, G.J. Riely, S. Baxi, A.L. Ho, R.J. Wong, D.G. Pfister, J.D. Wolchok, C.A. Barker, P.H. Gutin, C.W. Brennan, V. Tabar, I.K. Mellinghoff, L.M. DeAngelis, C.E. Ariyan, N. Lee, W.D. Tap, M.M. Gounder, S.P. D’Angelo, L. Saltz, Z.K. Stadler, H.I. Scher, J. Baselga, P. Razavi, C.A. Klebanoff, R. Yaeger, N.H. Segal, G.Y. Ku, R.P. DeMatteo, M. Ladanyi, N.A. Rizvi, M.F. Berger, N. Riaz, D.B. Solit, T.A. Chan, and L. G. T. Morris, Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019)
C. Kamiya-Matsuoka, N. Metrus, S.-P. Weathers, J. Ross, K. Shaw, M. Penas-Prado, M. Loghin, K. Alfaro-Munoz, B. O’Brien, R. Harrison, Z. Sadighi, N. Majd, W. Yung, F. Meric-Bernstam, D. Hambardzumyan, J. de Groot, Is immuno-oncology therapy effective in hypermutator glioblastomas with somatic or germline mutations? Ann. Oncol. 30, v144 (2019)
doi: 10.1093/annonc/mdz243.003
N. McGranahan, C. Swanton, Neoantigen quality, not quantity. Sci. Transl. Med. (2019). https://doi.org/10.1126/scitranslmed.aax7918
doi: 10.1126/scitranslmed.aax7918 pubmed: 31434757
J. Zhang, F.P. Caruso, J.K. Sa, S. Justesen, D.H. Nam, P. Sims, M. Ceccarelli, A. Lasorella, A. Iavarone, The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun. Biol. 2, 12 (2019)
doi: 10.1038/s42003-019-0369-7
S. Turajlic, K. Litchfield, H. Xu, R. Rosenthal, N. McGranahan, J.L. Reading, Y.N.S. Wong, A. Rowan, N. Kanu, M. Al Bakir, T. Chambers, R. Salgado, P. Savas, S. Loi, N.J. Birkbak, L. Sansregret, M. Gore, J. Larkin, S.A. Quezada, C. Swanton, Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017)
pubmed: 28694034 doi: 10.1016/S1470-2045(17)30516-8
R. Mandal, R.M. Samstein, K.W. Lee, J.J. Havel, H. Wang, C. Krishna, E.Y. Sabio, V. Makarov, F. Kuo, P. Blecua, A.T. Ramaswamy, J.N. Durham, B. Bartlett, X. Ma, R. Srivastava, S. Middha, A. Zehir, J.F. Hechtman, L.G. Morris, N. Weinhold, N. Riaz, D.T. Le, L.A. Diaz, T.A. Chan, Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019)
pubmed: 31048490 pmcid: 6685207 doi: 10.1126/science.aau0447
M.W. Pitz, A. Desai, S.A. Grossman, J.O. Blakeley, Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J. Neurooncol. 104, 629–638 (2011)
pubmed: 21400119 pmcid: 4020433 doi: 10.1007/s11060-011-0564-y
S. Agarwal, R. Sane, R. Oberoi, J.R. Ohlfest, W.F. Elmquist, Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med. (2011). https://doi.org/10.1017/S1462399411001888
W.A. Banks, Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. (2009). https://doi.org/10.1186/1471-2377-9-S1-S3
R. Roskoski, Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res. 144, 19–50 (2019)
pubmed: 30877063 doi: 10.1016/j.phrs.2019.03.006
M. Fridén, S. Winiwarter, G. Jerndal, O. Bengtsson, W. Hong, U. Bredberg, M. Hammarlund-Udenaes, M. Antonsson, Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J. Med. Chem. 52, 6233–6243 (2009)
pubmed: 19764786 doi: 10.1021/jm901036q
T.P. Heffron, Challenges of developing small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro. Oncol. 20, 307–312 (2018)
pubmed: 29016919 doi: 10.1093/neuonc/nox179

Auteurs

Mathew Lozinski (M)

School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
Hunter Medical Research Institute, Newcastle, NSW, Australia.

Nikola A Bowden (NA)

Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
Hunter Medical Research Institute, Newcastle, NSW, Australia.
School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.

Moira C Graves (MC)

Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
Hunter Medical Research Institute, Newcastle, NSW, Australia.
School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.

Michael Fay (M)

Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
Hunter Medical Research Institute, Newcastle, NSW, Australia.
Genesis Cancer Care, Gateshead, New South Wales, Australia.

Paul A Tooney (PA)

School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia. paul.tooney@newcastle.edu.au.
Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia. paul.tooney@newcastle.edu.au.
Hunter Medical Research Institute, Newcastle, NSW, Australia. paul.tooney@newcastle.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH