Granulosa cells affect in vitro maturation and subsequent parthenogenetic development of buffalo (Bubalus bubalis) oocytes.


Journal

Reproduction in domestic animals = Zuchthygiene
ISSN: 1439-0531
Titre abrégé: Reprod Domest Anim
Pays: Germany
ID NLM: 9015668

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 10 03 2021
accepted: 27 05 2021
pubmed: 1 6 2021
medline: 19 2 2022
entrez: 31 5 2021
Statut: ppublish

Résumé

Granulosa cells (GCs) play a crucial role in follicular development and atresia. Previous studies have showed that GCs in the form of monolayer influenced in vitro maturation (IVM) of oocytes. However, the effects of GCs in the form of conditioned medium and monolayer on IVM and development competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of GC-conditioned medium (GCCM) and monolayer GC on maturation efficiency and embryo development of buffalo oocytes after parthenogenetic activation (PA). Our results showed that GCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days and 20%) exerted significant negative effects on IVM rate (41.6% vs. 44.5%), but significantly enhanced embryo development (oocyte cleavage, 81.3% vs. 69.3%; blastocyst formation, 36.3% vs. 29.3%) of buffalo oocytes after PA compared with the control group. Furthermore, monolayer GC significantly reduced both maturation efficiency (40.2% vs. 44.5%) and embryo development (oocyte cleavage, 60.6% vs. 69.3%; blastocyst formation, 20.6% vs. 29.3%) of buffalo oocytes after PA compared to the control group. Our study indicated that GCs in the form of GCCM (2 days and 20%) and monolayer GC had different effects on IVM and subsequent parthenogenetic development of buffalo oocytes.

Identifiants

pubmed: 34057767
doi: 10.1111/rda.13974
doi:

Substances chimiques

Culture Media, Conditioned 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

141-148

Subventions

Organisme : Chinese National Natural Science Foundation
ID : 31560633
Organisme : Chinese National Natural Science Foundation
ID : 31760666
Organisme : State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
ID : SKLCUSA-a201908
Organisme : Nanning Scientific Research and Technological Development Foundation
ID : 20192087
Organisme : The New Century Guangxi Ten, Hundred and Thousand Talent Project
Organisme : Natural Science Foundation of Guangxi Province
ID : 2018JJA130074
Organisme : Natural Science Foundation of Guangxi Province
ID : 2020JJD130069
Organisme : Guangxi Innovation-Driven Development Fund Project
ID : AA17204051
Organisme : Innovation Project of Guangxi Graduate Education
ID : YCSW2021057

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Adeldust, H., Zeinoaldini, S., Kohram, H., Roudbar, M. A., & Joupari, M. D. (2015). In vitro maturation of ovine oocyte in a modified granulosa cells co-culture system and alpha-tocopherol supplementation: Effects on nuclear maturation and cleavage. Journal of Animal Science & Technology, 57, 27-32. https://doi.org/10.1186/s40781-015-0061-5
Cha, K. Y., & Chian, R. C. (1998). Maturation in vitro of immature human oocytes for clinical use. Human Reproduction Update, 4, 103-120. https://doi.org/10.1093/humupd/4.2.103
Clarke, H. J. (2018). Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdisciplinary Reviews: Developmental Biology, 7, 1-22. https://doi.org/10.1002/wdev.294
Deng, Y., Lao, Y., Ruan, Q., Zhang, J., Luo, C., Shi, D., & Lu, F. (2020). Activation of Wnt/β-Catenin signaling pathway enhances the derivation of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cellular Reprogramming, 22, 217-225.
Deshun, S., Fenghua, L., Yingming, W., Kuiqing, C., Sufang, Y., Jingwei, W., & Qingyou, L. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biology of Reproductin, 77, 285-291.
Downs, S. M., & Mastropolo, A. M. (1997). Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Molecular Reproduction and Developent, 46, 551-566. https://doi.org/10.1002/(SICI)1098-2795(199704)46:4<551:AID-MRD13>3.0.CO;2-Z
Fahiel, C., Mario, T. S., Yvonne, D., Lemus, A. E., Zayil, S., Eduardo, C., & Miguel, B. (2014). Co-culture with granulosa cells improve the in vitro maturation ability of porcine immature oocytes vitrified with cryolock. Cryobiology, 69, 299-304. https://doi.org/10.1016/j.cryobiol.2014.08.004
Fahiel, C., Yvonne, D., Lemus, A. E., Cristina, C., & Miguel, B. (2015). Porcine embryo production following in vitro fertilization and intracytoplasmic sperm injection from vitrified immature oocytes matured with a granulosa cell co-culture system. Cryobiology, 71, 299-305. https://doi.org/10.1016/j.cryobiol.2015.08.003
Jahromi, B. N., Mosallanezhad, Z., Matloob, N., Davari, M., & Ghobadifar, M. A. (2015). The potential role of granulosa cells in the maturation rate of immature human oocytes and embryo development: A co-culture study. Clinical & Experimental Reproductive Medicine, 42, 111-117. https://doi.org/10.5653/cerm.2015.42.3.111
Jaroudi, K. A., Hollanders, J. M., Elnour, A. M., Roca, G. L., Atared, A. M., & Coskun, S. (1999). Embryo development and pregnancies from in-vitro matured and fertilized human oocytes. Human Reproduction, 14, 1749-1751. https://doi.org/10.1093/humrep/14.7.1749
Junchul David, Y., Yubyeol, J., Lian, C., Seon-Ung, H., Eunhye, K., Eunsong, L., Kim, D. Y., & Sang-Hwan, H. (2015). Effects of coculture with cumulus-derived somatic cells on in vitro maturation of porcine oocytes. Theriogenology, 83, 294-305.
Kala, M., Shaikh, M. V., & Nivsarkar, M. (2017). Equilibrium between anti-oxidants and reactive oxygen species: A requisite for oocyte development and maturation. Reproductive Medicine and Biology, 16, 28-35. https://doi.org/10.1002/rmb2.12013
Liu, X., Qiao, P., Jiang, A., Jiang, J., Han, H., Wang, L., & Ren, C. (2015). Paracrine regulation of steroidogenesis in theca cells by granulosa cells derived from mouse preantral follicles. Biomed Research International, 2015, 925691-925698. https://doi.org/10.1155/2015/925691
Lu, F., Luo, C., Li, N., Liu, Q., Wei, Y., Deng, H., Wang, X., Li, X., Jiang, J., Deng, Y., & Shi, D. (2018). Efficient generation of transgenic buffalos (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Scientific Reports, 8, 6967-6975. https://doi.org/10.1038/s41598-018-25120-5
Luo, X., Zhou, Y., Zhang, B., Zhang, Y., Wang, X., Feng, T., Li, Z., Cui, K., Wang, Z., Luo, C., Li, H., Deng, Y., Lu, F., Han, J., Miao, Y., Mao, H., Yi, X., Ai, C., Wu, S., … Liu, Q. (2020). Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations. National Science Review, 7, 686-701. https://doi.org/10.1093/nsr/nwaa024
Marchal, R., Tomanek, M., Terqui, M., & Mermillod, P. (2001). Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Molecular Reproduction and Development, 60, 65-73. https://doi.org/10.1002/mrd.1062
Matsuda, F., Inoue, N., Manabe, N., & Ohkura, S. (2012). Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells. Journal of Reproduction and Development, 58, 44-50. https://doi.org/10.1262/jrd.2011-012
Mori, T., Amano, T., & Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biology of Reproduction, 62, 913-919. https://doi.org/10.1095/biolreprod62.4.913
Nie, J., Yan, K., Sui, L., Zhang, H., Zhang, H., Yang, X., Lu, S., Lu, K., & Liang, X. (2020). Mogroside V improves porcine oocyte in vitro maturation and subsequent embryonic development. Theriogenology, 141, 35-40. https://doi.org/10.1016/j.theriogenology.2019.09.010
Nyholt De Prada, J. K., Lee, Y. S., Latham, K. E., Chaffin, C. L., & VandeVoort, C. A. (2009). Role for cumulus cell-produced EGF-like ligands during primate oocyte maturation in vitro. American Journal Physiology-Endocrinology and Metabolism, 296, 1049-1058. https://doi.org/10.1152/ajpendo.90930.2008
Oberlender, G., Murgas, L. D. S., Zangeronimo, M. G., Da Silva, A. C., Menezes, T. D. A., Pontelo, T. P., & Vieira, L. A. (2013). Role of insulin-like growth factor-I and follicular fluid from ovarian follicles with different diameters on porcine oocyte maturation and fertilization in vitro. Theriogenology, 80, 319-327.
Reichman, D. E., Politch, J., Ginsburg, E. S., & Racowsky, C. (2010). Extended in vitro maturation of immature oocytes from stimulated cycles: An analysis of fertilization potential, embryo development, and reproductive outcomes. Journal of Assisted Reproduction and Genetics, 27, 347-356. https://doi.org/10.1007/s10815-010-9416-5
Rouhollahi Varnosfaderani, S., Hajian, M., Jafarpour, F., Ghazvini Zadegan, F., & Nasr-Esfahani, M. H. (2020). Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One, 15, 229043-229361. https://doi.org/10.1371/journal.pone.0229043
Ruddock, N. T., Wilson, K. J., Cooney, M. A., Korfiatis, N. A., Tecirlioglu, R. T., & French, A. J. (2004). Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biology of Reproduction, 70, 1131-1135.
Russell, J. B. (1998). Immature oocyte retrieval combined with in-vitro oocyte maturation. Human Reproduction, 13, 63-70. https://doi.org/10.1093/humrep/13.suppl_3.63
Salamone, D. F., Damiani, P., Fissore, R. A., Robl, J. M., & Duby, R. T. (2001). Biochemical and developmental evidence that ooplasmic maturation of prepubertal bovine oocytes is compromised. Biology of Reproduction, 64, 1761-1768.
Sirard, M. A., & Bilodeau, S. (1990). Granulosa cells inhibit the resumption of meiosis in bovine oocytes in vitro. Biology of Reproduction, 43, 777-783.
Sugiura, K., Pendola, F. L., & Eppig, J. J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: Energy metabolism. Developmental Biology, 279, 20-30. https://doi.org/10.1016/j.ydbio.2004.11.027
Tao, Y., Cao, C., Zhang, M., Fang, F., Liu, Y., Zhang, Y., Ding, J., & Zhang, X. (2008). Effects of cumulus cells on rabbit oocytein vitro maturation. Journal of Animal Physiology and Animal Nutrition, 92, 438-447.
Tatemoto, H., Sakurai, N., & Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: Role of cumulus cells. Biology of Reproduction, 63, 805-810.
Trounson, A., Anderiesz, C., & Jones, G. (2001). Maturation of human oocytes in vitro and their developmental competence. Reproduction, 121, 51-75. https://doi.org/10.1530/rep.0.1210051
Van den Hurk, R., & Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology, 63, 1717-1751. https://doi.org/10.1016/j.theriogenology.2004.08.005
Virant-Klun, I., Bauer, C., Ståhlberg, A., Kubista, M., & Skutella, T. (2018). Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reproductive Biomedicine Online, 36, 508-523. https://doi.org/10.1016/j.rbmo.2018.01.011
Xu, H., Yang, X., Lu, S., Liang, X., Lu, Y., Zhang, M., & Lu, K. (2018). Treatment with acetyl-l-carnitine during in vitro maturation of buffalo oocytes improves oocyte quality and subsequent embryonic development. Theriogenology, 118, 80-89. https://doi.org/10.1016/j.theriogenology.2018.05.033
Zhang, J., Deng, Y., Chen, W., Zi, Y., Shi, D., & Lu, F. (2020). Theca cell-conditioned medium added to in vitro maturation enhances embryo developmental competence of buffalo (Bubalus bubalis) oocytes after parthenogenic activation. Reproduction in Domestic Animals, 55, 1501-1510.
Zhang, J., Deng, Y., Xu, J., Yang, X., Wang, H., Shi, D., & Lu, F. (2020). Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells. In Vitro Cellular & Developmental Biology - Animal, 56, 799-807. https://doi.org/10.1007/s11626-020-00509-7
Zhang, J., Lei, C., Deng, Y., Ahmed, J. Z., Shi, D., & Lu, F. (2020). Hypoxia enhances mesenchymal characteristics maintenance of buffalo bone marrow-derived mesenchymal stem cells. Cellular Reprogramming, 22, 167-177. https://doi.org/10.1089/cell.2019.0097
Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., & Eppig, J. J. (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330, 366-369. https://doi.org/10.1126/science.1193573
Zhao, X., Du, F., Liu, X., Ruan, Q., Wu, Z., Lei, C., Deng, Y., Luo, C., Jiang, J., Shi, D., & Lu, F. (2019). Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology, 130, 79-88. https://doi.org/10.1016/j.theriogenology.2019.02.020

Auteurs

Jun Zhang (J)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Haoxin Wang (H)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Jiaka Lu (J)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Qing Yu (Q)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Penghui Fu (P)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Zhengda Li (Z)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Yun Feng (Y)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Yanxin Wang (Y)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Yanfei Deng (Y)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Deshun Shi (D)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Fenghua Lu (F)

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH