Antitumor effect of Melaleuca alternifolia essential oil and its main component terpinen-4-ol in combination with target therapy in melanoma models.
Journal
Cell death discovery
ISSN: 2058-7716
Titre abrégé: Cell Death Discov
Pays: United States
ID NLM: 101665035
Informations de publication
Date de publication:
31 May 2021
31 May 2021
Historique:
received:
10
03
2021
accepted:
01
05
2021
revised:
22
04
2021
entrez:
1
6
2021
pubmed:
2
6
2021
medline:
2
6
2021
Statut:
epublish
Résumé
Essential oils (EOs) have been recently emerging for their promising biological activities in preventing tumorigenesis or progression of different tumor histotypes, including melanoma. In this study, we investigated the antitumor activity of a panel of EOs in different tumor models. The ability of Melaleuca alternifolia (tea tree oil) and its main component, terpinen-4-ol, to sensitize the target therapy currently used for melanoma treatment was also assessed. Our results demonstrated that EOs differently affect the viability of human cancer cells and led us to select six EOs effective in melanoma and lung cancer cells, without toxic effects in human fibroblasts. When combined with dabrafenib and/or trametinib, Melaleuca alternifolia synergistically reduced the viability of melanoma cells by activating apoptosis. Through machine learning classification modeling, α-terpineol, tepinolene, and terpinen-4-ol, three components of Melaleuca alternifolia, were identified as the most likely relevant components responsible for the EO's antitumor effect. Among them, terpinen-4-ol was recognized as the Melaleuca alternifolia component responsible for its antitumor and proapoptotic activity. Overall, our study holds promise for further analysis of EOs as new anticancer agents and supports the rationale for their use to improve target therapy response in melanoma.
Identifiants
pubmed: 34059622
doi: 10.1038/s41420-021-00510-3
pii: 10.1038/s41420-021-00510-3
pmc: PMC8165351
doi:
Types de publication
Journal Article
Langues
eng
Pagination
127Subventions
Organisme : Sapienza Università di Roma (Sapienza University of Rome)
ID : Ateneo Grant 2019- P.I. RR (prot. RM11916B8876093E)
Organisme : Sapienza Università di Roma (Sapienza University of Rome)
ID : Ateneo Grant 2018-P.I. RR (prot. RM118164361B425B)
Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG 2020 - ID. 24315
Références
Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).
pubmed: 12068308
doi: 10.1038/nature00766
Lu, H. et al. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 550, 133–136 (2017).
pubmed: 28953887
pmcid: 5891348
doi: 10.1038/nature24040
Yuan, R. et al. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann. N. Y. Acad. Sci. 1401, 19–27 (2017).
pubmed: 28891091
doi: 10.1111/nyas.13387
Flaherty, L. E. et al. Southwest Oncology Group S0008: a phase III trial of high-dose interferon Alfa-2b versus cisplatin, vinblastine, and dacarbazine, plus interleukin-2 and interferon in patients with high-risk melanoma-an intergroup study of cancer and leukemia Group B, Children’s Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. J. Clin. Oncol. 32, 3771–3778 (2014).
pubmed: 25332243
pmcid: 4226807
doi: 10.1200/JCO.2013.53.1590
Mattila, K. E. et al. Combination chemotherapy with temozolomide, lomustine, vincristine and interferon-alpha (TOL-IFN) plus vemurafenib or TOL-IFN as first-line treatment for patients with advanced melanoma. Acta Oncol. 59, 310–314 (2020).
pubmed: 31564175
doi: 10.1080/0284186X.2019.1670862
Qin, W. et al. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics 10, 8179–8196 (2020).
pubmed: 32724465
pmcid: 7381723
doi: 10.7150/thno.44194
Munster, P. N. & Daud, A. I. Preclinical and clinical activity of the topoisomerase I inhibitor, karenitecin, in melanoma. Expert Opin. Investig. Drugs 20, 1565–1574 (2011).
pubmed: 21985236
doi: 10.1517/13543784.2011.617740
Alves-Silva, J. M., Zuzarte, M., Marques, C., Girão, H. & Salgueiro, L. Protective effects of phenylpropanoids and phenylpropanoid-rich essential oils on the cardiovascular system. Mini Rev. Med. Chem. 19, 1459–1471 (2019).
pubmed: 31218957
doi: 10.2174/1389557519666190620091915
Lari, Z. N. et al. Efficacy of inhaled Lavandula angustifolia Mill. Essential oil on sleep quality, quality of life and metabolic control in patients with diabetes mellitus type II and insomnia. J. Ethnopharmacol. 251, 112560 (2020).
doi: 10.1016/j.jep.2020.112560
Satheeshkumar, N., Vijayan, R. S., Lingesh, A., Santhikumar, S. & Vishnuvardhan, C. Spices: potential therapeutics for Alzheimer’s disease. Adv. Neurobiol. 12, 57–78 (2016).
pubmed: 27651248
doi: 10.1007/978-3-319-28383-8_4
Boukhatem, M. N. & Setzer, W. N. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants 9, 800 (2020).
pmcid: 7356962
doi: 10.3390/plants9060800
Senthil Kumar, K. et al. Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants 9, 770 (2020).
pmcid: 7355681
doi: 10.3390/plants9060770
Evans, A., Malvar, J., Garretson, C., Pedroja Kolovos, E. & Baron Nelson, M. The use of aromatherapy to reduce chemotherapy-induced nausea in children with cancer: a randomized, double-blind, placebo-controlled trial. J. Pediatr. Oncol. Nurs. 35, 392–398 (2018).
pubmed: 29947285
doi: 10.1177/1043454218782133
Tamaki, K. et al. Randomized trial of aromatherapy versus conventional care for breast cancer patients during perioperative periods. Breast Cancer Res. Treat. 162, 523–531 (2017).
pubmed: 28181131
doi: 10.1007/s10549-017-4134-7
Ishfaq, P. M., Shukla, A., Beraiya, S., Tripathi, S. & Mishra, S. K. Biochemical and pharmacological applications of essential oils in human health especially in cancer prevention. Anticancer Agents Med. Chem. 18, 1815–1827 (2018).
pubmed: 30277165
doi: 10.2174/1871520618666181002130240
Lesgards, J. F., Baldovini, N., Vidal, N. & Pietri, S. Anticancer activities of essential oils constituents and synergy with conventional therapies: a review. Phytother. Res. 28, 1423–1446 (2014).
pubmed: 24831562
doi: 10.1002/ptr.5165
Hakim, I. A., Harris, R. B. & Ritenbaugh, C. Citrus peel use is associated with reduced risk of squamous cell carcinoma of the skin. Nutr. Cancer 37, 161–168 (2000).
pubmed: 11142088
doi: 10.1207/S15327914NC372_7
da Fonseca, C. O. et al. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg. Neurol. 70, 259–266 (2008) .
pubmed: 18295834
doi: 10.1016/j.surneu.2007.07.040
Chen, T. C., Fonseca, C. O. & Schönthal, A. H. Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Cancer Res. 5, 1580–1593 (2015).
pubmed: 26175929
pmcid: 4497427
Faria, G. M. et al. Intranasal perillyl alcohol therapy improves survival of patients with recurrent glioblastoma harboring mutant variant for MTHFR rs1801133 polymorphism. BMC Cancer 20, 1–10 (2020).
doi: 10.1186/s12885-020-06802-8
Sobral, M. V., Xavier, A. L., Lima, T. C. & de Sousa, D. P. Antitumor activity of monoterpenes found in essential oils. ScientificWorldJournal 2014, 953451 (2014).
pubmed: 25401162
pmcid: 4220615
doi: 10.1155/2014/953451
Pavithra, P. S., Mehta, A. & Verma, R. S. Essential oils: from prevention to treatment of skin cancer. Drug Discov. Today 24, 644–655 (2019).
pubmed: 30508640
doi: 10.1016/j.drudis.2018.11.020
Di Martile, M., Garzoli, S., Ragno, R. & Bufalo, D. D. Essential oils and their main chemical components: the past 20 years of preclinical studies in melanoma. Cancers 12, 2650 (2020).
pmcid: 7565555
doi: 10.3390/cancers12092650
Carnesecchi, S. et al. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 215, 53–59 (2004).
pubmed: 15374632
doi: 10.1016/j.canlet.2004.06.019
Polo, M. P., Crespo, R. & de Bravo, M. G. Geraniol and simvastatin show a synergistic effect on a human hepatocarcinoma cell line. Cell Biochem Funct. 29, 452–458 (2011).
pubmed: 21735455
doi: 10.1002/cbf.1772
Li, L. J., Zhong, L. F., Jiang, L. P., Geng, C. Y. & Zou, L. J. β-Elemene radiosensitizes lung cancer A549 cells by enhancing DNA damage and inhibiting DNA repair. Phytother. Res, 25, 1095–1097 (2011).
pubmed: 22692988
doi: 10.1002/ptr.3367
Li, Q. Q. et al. beta-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncol. Rep. 22, 161–170 (2009).
pubmed: 19513519
doi: 10.3892/or_00000420
Legault, J. & Pichette, A. Potentiating effect of β‐caryophyllene on anticancer activity of α‐humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharm. 59, 1643–1647 (2007).
doi: 10.1211/jpp.59.12.0005
Rabi, T. & Bishayee, A. d -Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis. J. Carcinog. 8, 9 (2009).
pubmed: 19465777
pmcid: 2699604
doi: 10.4103/1477-3163.51368
Hussain, A. et al. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother. Radiopharm. 26, 519–527 (2011).
pubmed: 21939359
Effenberger-Neidnicht, K. & Schobert, R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. Pharm. 67, 867–874 (2011).
doi: 10.1007/s00280-010-1386-x
Lei, X. et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys. Res. Commun. 417, 864–868 (2012).
pubmed: 22206670
doi: 10.1016/j.bbrc.2011.12.063
Carson, C. F., Hammer, K. A. & Riley, T. V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 19, 50–62 (2006).
pubmed: 16418522
pmcid: 1360273
doi: 10.1128/CMR.19.1.50-62.2006
Jenkins R. W., Fisher D. E. Treatment of advanced melanoma in 2020 and beyond. J. Invest. Dermatol. 141, 23–31 (2020).
Assmann, C. E. et al. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomed. Pharmacother. 103, 1253–1261 (2018).
pubmed: 29864906
doi: 10.1016/j.biopha.2018.04.096
Hoai, N. T., Duc, H. V., Thao do, T., Orav, A. & Raal, A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacogn. Mag. 11, S290–S295 (2015).
pubmed: 26664017
pmcid: 4653339
doi: 10.4103/0973-1296.166052
Kim D. Y., et al. Chemical composition, antioxidant and anti-melanogenic activities of essential oils from chrysanthemum boreale makino at different harvesting stages. Chem. Biodivers. 15, https://doi.org/10.1002/cbdv.201700506 (2018).
Russo, A. et al. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxicol. 55, 42–47 (2013).
pubmed: 23291326
doi: 10.1016/j.fct.2012.12.036
Garzoli, S. et al. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 20, 9640–9655 (2015).
pubmed: 26016551
pmcid: 6272612
doi: 10.3390/molecules20069640
Bozovic, M., Navarra, A., Garzoli, S., Pepi, F. & Ragno, R. Esential oils extraction: a 24-hour steam distillation systematic methodology. Nat. Prod. Res. 31, 2387–2396 (2017).
pubmed: 28361547
doi: 10.1080/14786419.2017.1309534
Hata, T. et al. Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells. Vivo 17, 553–559 (2003).
Zu, Y. et al. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules 15, 3200–3210 (2010).
pubmed: 20657472
pmcid: 6263286
doi: 10.3390/molecules15053200
Tayarani-Najaran, Z. et al. Comparative studies of cytotoxic and apoptotic properties of different extracts and the essential oil of Lavandula angustifolia on malignant and normal cells. Nutr. Cancer 66, 424–434 (2014).
pubmed: 24571090
doi: 10.1080/01635581.2013.878736
Zhao, Y. et al. In vitro and in vivo efficacy studies of lavender angustifolia essential oil and its active constituents on the proliferation of human prostate cancer. Integr. Cancer Ther. 16, 215–226 (2017).
pubmed: 27151584
doi: 10.1177/1534735416645408
Loizzo, M. et al. Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 41, 1002–1012 (2008).
pubmed: 19040575
pmcid: 6496814
doi: 10.1111/j.1365-2184.2008.00561.x
Calcabrini, A. et al. Terpinen-4-ol, the mai n component of Melaleuca alternifolia (tea tree) oi l inhibits the in vitro growth of human melanom a cells. J. Invest. Dermatol. 122, 349–360 (2004).
pubmed: 15009716
doi: 10.1046/j.0022-202X.2004.22236.x
Greay, S. J. et al. Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother. Pharm. 65, 877–888 (2010).
doi: 10.1007/s00280-009-1093-7
Ramadan, M. A., Shawkey, A. E., Rabeh, M. A. & Abdellatif, A. O. Expression of P53, BAX, and BCL-2 in human malignant melanoma and squamous cell carcinoma cells after tea tree oil treatment in vitro. Cytotechnology 71, 461–473 (2019).
pubmed: 30599074
pmcid: 6368524
doi: 10.1007/s10616-018-0287-4
Bozzuto, G., Colone, M., Toccacieli, L., Stringaro, A. & Molinari, A. Tea tree oil might combat melanoma. Planta Med. 77, 54–56 (2011).
pubmed: 20560116
doi: 10.1055/s-0030-1250055
Greay, S. J. et al. Inhibition of established subcutaneous murine tumour growth with topical Melaleuca alternifolia (tea tree) oil. Cancer Chemother. Pharm. 66, 1095–1102 (2010).
doi: 10.1007/s00280-010-1267-3
Herman, A. & Herman, A. P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J. Pharm. Pharm. 67, 473–485 (2015).
doi: 10.1111/jphp.12334
Sporn, M. B. & Suh, N. Chemoprevention: an essential approach to controlling cancer. Nat. Rev. Cancer 2, 537–543 (2002).
pubmed: 12094240
doi: 10.1038/nrc844
Einspahr, J. G., Stratton, S. P., Bowden, G. T. & Alberts, D. S. Chemoprevention of human skin cancer. Crit. Rev. Oncol. Hematol. 41, 269–285 (2002).
pubmed: 11880204
doi: 10.1016/S1040-8428(01)00185-8
Pazyar, N., Yaghoobi, R., Bagherani, N. & Kazerouni, A. A review of applications of tea tree oil in dermatology. Int J. Dermatol. 52, 784–790 (2013).
pubmed: 22998411
doi: 10.1111/j.1365-4632.2012.05654.x
Hawkins, J., Hires, C., Dunne, E. & Baker, C. The relationship between lavender and tea tree essential oils and pediatric endocrine disorders: a systematic review of the literature. Complement Ther. Med. 49, 102288 (2020).
pubmed: 32147050
doi: 10.1016/j.ctim.2019.102288
Fujimura T., Kambayashi Y., Ohuchi K., Muto Y., Aiba S. Treatment of advanced melanoma: past, present and future. Life 10, 208 (2020).
Bai X., Flaherty K. T. Targeted and immunotherapies in BRAF mutant melanoma: where we stand and what to expect. Br. J. Dermatol. https://doi.org/10.1111/bjd.19394 (2020).
Banjerdpongchai, R. & Khaw-On, P. Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells. Asian Pac. J. Cancer Prev. 14, 7537–7542 (2013).
pubmed: 24460330
doi: 10.7314/APJCP.2013.14.12.7537
Laghezza Masci V., et al. Apoptotic effects on HL60 human leukaemia cells induced by lavandin essential oil treatment. Molecules 25, 538 (2020).
Nakayama, K. et al. Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species. Oncol. Lett. 14, 2015–2024 (2017).
pubmed: 28781645
pmcid: 5530226
doi: 10.3892/ol.2017.6370
Shapira, S., Pleban, S., Kazanov, D., Tirosh, P. & Arber, N. Terpinen-4-ol: a novel and promising therapeutic agent for human gastrointestinal cancers. PloS ONE 11, e0156540 (2016).
pubmed: 27275783
pmcid: 4898785
doi: 10.1371/journal.pone.0156540
Wu, C. S. et al. Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evid. Based Complement Altern. Med. 2012, 818261 (2012).
doi: 10.1155/2012/818261
Cerchiara, T. et al. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies. Nat. Prod. Commun. 10, 547–549 (2015).
pubmed: 25973472
Mitropoulou, G. et al. Citrus medica essential oil exhibits significant antimicrobial and antiproliferative activity. LWT 84, 344–352 (2017).
doi: 10.1016/j.lwt.2017.05.036
Girola, N. et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun. 467, 928–934 (2015).
pubmed: 26471302
doi: 10.1016/j.bbrc.2015.10.041
Santana, J. S. et al. Essential oils from Schinus terebinthifolius leaves–chemical composition and in vitro cytotoxicity evaluation. Pharm. Biol. 50, 1248–1253 (2012).
pubmed: 22870865
doi: 10.3109/13880209.2012.666880
Giordani, C. et al. Interaction of tea tree oil with model and cellular membranes. J. Med. Chem. 49, 4581–4588 (2006).
pubmed: 16854063
doi: 10.1021/jm060228i
Balavandi, Z. et al. The use of ß-elemene to enhance radio sensitization of A375 human melanoma cells. Cell J. 21, 419–425 (2020).
pubmed: 31376323
Hatiboglu, M. A. et al. Thymoquinone induces apoptosis in B16-F10 melanoma cell through inhibition of p-STAT3 and inhibits tumor growth in a murine intracerebral melanoma model. World Neurosurg. 114, e182–e190 (2018).
pubmed: 29510292
doi: 10.1016/j.wneu.2018.02.136
Ambrož M., et al. The effects of selected sesquiterpenes from myrica rubra essential oil on the efficacy of doxorubicin in sensitive and resistant cancer cell lines. Molecules 22, 1021 (2017).
Zeng, C. et al. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2-3p-ABCC3 axis. Biochem Pharm. 174, 113795 (2020).
pubmed: 31926937
doi: 10.1016/j.bcp.2020.113795
Maruoka, T. et al. Lemongrass essential oil and citral inhibit Src/Stat3 activity and suppress the proliferation/survival of small-cell lung cancer cells, alone or in combination with chemotherapeutic agents. Int J. Oncol. 52, 1738–1748 (2018).
pubmed: 29568932
Cross, S. E., Russell, M., Southwell, I. & Roberts, M. S. Human skin penetration of the major components of Australian tea tree oil applied in its pure form and as a 20% solution in vitro. Eur. J. Pharm. Biopharm. 69, 214–222 (2008).
pubmed: 17983738
doi: 10.1016/j.ejpb.2007.10.002
D’Aguanno, S. et al. Semaphorin 5A drives melanoma progression: role of Bcl-2, miR-204 and c-Myb. J. Exp. Clin. Cancer Res. 37, 278 (2018).
pubmed: 30454024
pmcid: 6245779
doi: 10.1186/s13046-018-0933-x
Verschraegen, C. F., Mendoza, J. T., Kozielski, A. J. & Giovanella, B. C. Modulation of the response to chemotherapy in a human melanoma clone by the site of growth in the nude mouse. Anticancer Res. 15, 9–11 (1995).
pubmed: 7733648
Di Martile, M. et al. Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma. Oncogenesis 7, 1–14 (2018).
doi: 10.1038/s41389-018-0026-x
Tupone, M. G. et al. microRNA-378a-5p iS a novel positive regulator of melanoma progression. Oncogenesis 9, 1–13 (2020).
doi: 10.1038/s41389-020-0203-6
Del Bufalo, D. et al. Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol. Cancer 13, 230 (2014).
pubmed: 25301686
pmcid: 4198757
doi: 10.1186/1476-4598-13-230
Papa R., et al. Essential oils biofilm modulation activity, chemical and machine learning analysis. application on staphylococcus aureus isolates from cystic fibrosis patients. Int. J. Mol. Sci. 21, 9258 (2020).
Patsilinakos A., et al. Machine learning analyses on data including essential oil chemical composition and in vitro experimental antibiofilm activities against staphylococcus species. Molecules 24, 890 (2019).