Mitochondrial Dysfunction in Mitochondrial Medicine: Current Limitations, Pitfalls, and Tomorrow.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 1 6 2021
pubmed: 2 6 2021
medline: 25 6 2021
Statut: ppublish

Résumé

Until recently restricted to hereditary mitochondrial diseases, mitochondrial dysfunction is now recognized as a key player and strategic factor in the pathophysiological of many human diseases, ranging from the metabolism, vascular, cardiac, and neurodegenerative diseases to cancer. Because of their participation in a myriad of cellular functions and signaling pathways, precisely identifying the cause of mitochondrial "dysfunctions" can be challenging and requires robust and controlled techniques. Initially limited to the analysis of the respiratory chain functioning, these analytical techniques now enlarge to the analyses of mitochondrial and cellular metabolism, based on metabolomic approaches.Here, we address the methods used to assay mitochondrial dysfunction, with a highlight on the techniques used in diagnosis on tissues and cells derived from patients, the information they provide, and their strength and weakness.Targeting mitochondrial dysfunction by various strategies is a huge challenge, requires robust methods of evaluation, and should be able to take into consideration the mitochondria dynamics and localization. The future of mitochondrial medicine is strongly related to a perfect comprehension of its dysfunction.

Identifiants

pubmed: 34060029
doi: 10.1007/978-1-0716-1266-8_1
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1-29

Références

Burki F (2016) Mitochondrial evolution: going, going, gone. Curr Biol 26:R410–R412. https://doi.org/10.1016/j.cub.2016.04.032
doi: 10.1016/j.cub.2016.04.032 pubmed: 27218846
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH (2018) Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev 39:489–517. https://doi.org/10.1210/er.2017-00211
doi: 10.1210/er.2017-00211 pubmed: 29697773 pmcid: 6093334
Veloso CD, Belew GD, Ferreira LL et al (2019) A mitochondrial approach to cardiovascular risk and disease. Curr Pharm Des 25:3175–3194. https://doi.org/10.2174/1389203720666190830163735
doi: 10.2174/1389203720666190830163735 pubmed: 31470786
Onyango IG (2017) Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front Biosci 22:4521. https://doi.org/10.2741/4521
doi: 10.2741/4521
Jodeiri Farshbaf M, Ghaedi K (2017) Huntington’s disease and mitochondria. Neurotox Res 32:518–529. https://doi.org/10.1007/s12640-017-9766-1
doi: 10.1007/s12640-017-9766-1 pubmed: 28639241
Edeas M, Saleh J, Peyssonnaux C (2020) Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 97:303–305. https://doi.org/10.1016/j.ijid.2020.05.110
doi: 10.1016/j.ijid.2020.05.110 pubmed: 32497811 pmcid: 7264936
Rongvaux A (2018) Innate immunity and tolerance toward mitochondria. Mitochondrion 41:14–20. https://doi.org/10.1016/j.mito.2017.10.007
doi: 10.1016/j.mito.2017.10.007 pubmed: 29054471
Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566. https://doi.org/10.1016/j.cell.2016.07.002
doi: 10.1016/j.cell.2016.07.002 pubmed: 27471965 pmcid: 5036969
Zhang D, Guo R, Lei L et al (2020) COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv 2020.03.24.20042655. doi: https://doi.org/10.1101/2020.03.24.20042655
Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
doi: 10.1016/S0140-6736(20)30566-3 pubmed: 32171076 pmcid: 7270627
Saleh J, Peyssonnaux C, Singh KK, Edeas M (2020) Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54:1–7. https://doi.org/10.1016/j.mito.2020.06.008
doi: 10.1016/j.mito.2020.06.008 pubmed: 32574708 pmcid: 7837003
Lodigiani C, Iapichino G, Carenzo L et al (2020) Venous and arterial thromboembolic complications in {COVID}-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024
doi: 10.1016/j.thromres.2020.04.024 pubmed: 32353746 pmcid: 7177070
Giannis D, Ziogas IA, Gianni P (2020) Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 127:104362. https://doi.org/10.1016/j.jcv.2020.104362
doi: 10.1016/j.jcv.2020.104362 pubmed: 32305883 pmcid: 7195278
Zhang Y, Xiao M, Zhang S et al (2020) Coagulopathy and antiphospholipid antibodies in patients with Covid-19. NEJM 38:1–3
Oxley TJ, Mocco J, Majidi S et al (2020) Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 382:e60. https://doi.org/10.1056/NEJMc2009787
doi: 10.1056/NEJMc2009787 pubmed: 32343504
Chevrollier A, Cassereau J, Ferré M et al (2012) Standardized mitochondrial analysis gives new insights into mitochondrial dynamics and OPA1 function. Int J Biochem Cell Biol 44:980–988. https://doi.org/10.1016/j.biocel.2012.03.006
doi: 10.1016/j.biocel.2012.03.006 pubmed: 22433900
Santidrian AF, Matsuno-Yagi A, Ritland M et al (2013) Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J Clin Invest 123:1068–1081. https://doi.org/10.1172/JCI64264
doi: 10.1172/JCI64264 pubmed: 23426180 pmcid: 3582128
Cantó C, Menzies KJ, Auwerx J (2015) NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023
doi: 10.1016/j.cmet.2015.05.023 pubmed: 26118927 pmcid: 4487780
Ježek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37:2478–2503. https://doi.org/10.1016/j.biocel.2005.05.013
doi: 10.1016/j.biocel.2005.05.013 pubmed: 16103002
Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034
doi: 10.1016/j.cub.2014.03.034 pubmed: 24845678 pmcid: 4055301
Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. https://doi.org/10.1083/jcb.201102095
doi: 10.1083/jcb.201102095 pubmed: 21746850 pmcid: 3135394
Anderson NM, Mucka P, Kern JG, Feng H (2018) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–237. https://doi.org/10.1007/s13238-017-0451-1
doi: 10.1007/s13238-017-0451-1 pubmed: 28748451
Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. https://doi.org/10.1038/s41467-019-13668-3
doi: 10.1038/s41467-019-13668-3 pubmed: 31900386 pmcid: 6941980
Romero-Garcia S, Prado-Garcia H (2019) Mitochondrial calcium: transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol. https://doi.org/10.3892/ijo.2019.4696
Quiles JM, Gustafsson ÅB (2020) Mitochondrial quality control and cellular proteostasis: two sides of the same coin. Front Physiol 11:515. https://doi.org/10.3389/fphys.2020.00515
doi: 10.3389/fphys.2020.00515 pubmed: 32528313 pmcid: 7263099
Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118. https://doi.org/10.1146/annurev-genet-102108-134850
doi: 10.1146/annurev-genet-102108-134850 pubmed: 19659442 pmcid: 4762029
Weissig V (2020) Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26:40–57. https://doi.org/10.1016/j.molmed.2019.09.002
doi: 10.1016/j.molmed.2019.09.002 pubmed: 31727544
Bioenergetics 3 (Nicholls, D. G., and Ferguson, S. J., Academic Press, London, 2002). Biochemistry 69, 818–819 (2004). doi: https://doi.org/10.1023/B:BIRY.0000040210.06512.a7
Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069. https://doi.org/10.1146/annurev.bi.54.070185.005055
doi: 10.1146/annurev.bi.54.070185.005055 pubmed: 2862839
Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology 26:192–205. https://doi.org/10.1152/physiol.00046.2010
doi: 10.1152/physiol.00046.2010 pubmed: 21670165
De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216
doi: 10.1146/annurev-biochem-060614-034216 pubmed: 27145841
Hsieh VC, Krane EJ, Morgan PG (2017) Mitochondrial disease and anesthesia. J Inborn Errors Metab Screen 5:232640981770777. https://doi.org/10.1177/2326409817707770
doi: 10.1177/2326409817707770
Haschke RH, Fink BR (1975) Lidocaine effects on brain mitochondrial metabolism in vitro. Anesthesiology 42:737–739. https://doi.org/10.1097/00000542-197506000-00018
doi: 10.1097/00000542-197506000-00018 pubmed: 1130742
Gellerich FN, Mayr JA, Reuter S et al (2004) The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 4:427–439. https://doi.org/10.1016/j.mito.2004.07.007
doi: 10.1016/j.mito.2004.07.007 pubmed: 16120404
Medja F, Allouche S, Frachon P et al (2009) Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 9:331–339. https://doi.org/10.1016/j.mito.2009.05.001
doi: 10.1016/j.mito.2009.05.001 pubmed: 19439198
Signes A, Fernandez-Vizarra E (2018) Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem 62:255–270. https://doi.org/10.1042/EBC20170098
doi: 10.1042/EBC20170098 pubmed: 30030361 pmcid: 6056720
Cogliati S, Lorenzi I, Rigoni G et al (2018) Regulation of mitochondrial electron transport chain assembly. J Mol Biol 430:4849–4873. https://doi.org/10.1016/j.jmb.2018.09.016
doi: 10.1016/j.jmb.2018.09.016 pubmed: 30292820
Mimaki M, Wang X, McKenzie M et al (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta Bioenerg 1817:851–862. https://doi.org/10.1016/j.bbabio.2011.08.010
doi: 10.1016/j.bbabio.2011.08.010
Desquiret-Dumas V, Leman G, Wetterwald C et al (2019) Warburg-like effect is a hallmark of complex I assembly defects. Biochim Biophys Acta Mol basis Dis 1865:2475–2489. https://doi.org/10.1016/j.bbadis.2019.05.011
doi: 10.1016/j.bbadis.2019.05.011 pubmed: 31121247
Wortmann S, Rodenburg RJT, Huizing M et al (2006) Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation. Mol Genet Metab 88:47–52. https://doi.org/10.1016/j.ymgme.2006.01.013
doi: 10.1016/j.ymgme.2006.01.013 pubmed: 16527507
Giachin G, Bouverot R, Acajjaoui S et al (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:43. https://doi.org/10.3389/fmolb.2016.00043
doi: 10.3389/fmolb.2016.00043 pubmed: 27597947 pmcid: 4992684
Miwa S, Jow H, Baty K et al (2014) Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun 5:3837. https://doi.org/10.1038/ncomms4837
doi: 10.1038/ncomms4837 pubmed: 24815183
Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648. https://doi.org/10.1038/nature19774
doi: 10.1038/nature19774 pubmed: 27654913
Dudkina NV, Sunderhaus S, Boekema EJ, Braun H-P (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J Bioenerg Biomembr 40:419–424. https://doi.org/10.1007/s10863-008-9167-5
doi: 10.1007/s10863-008-9167-5 pubmed: 18839290 pmcid: 2780661
Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231. https://doi.org/10.1016/0003-2697(91)90094-A
doi: 10.1016/0003-2697(91)90094-A pubmed: 1812789
Calvaruso MA, Smeitink J, Nijtmans L (2008) Electrophoresis techniques to investigate defects in oxidative phosphorylation. Methods 46:281–287. https://doi.org/10.1016/j.ymeth.2008.09.023
doi: 10.1016/j.ymeth.2008.09.023 pubmed: 18948205
Leary SC (2012) Blue native polyacrylamide gel electrophoresis: a powerful diagnostic tool for the detection of assembly defects in the enzyme complexes of oxidative phosphorylation. Methods Mol Biol 837:195–206. https://doi.org/10.1007/978-1-61779-504-6_13
doi: 10.1007/978-1-61779-504-6_13 pubmed: 22215549
Assouline Z, Jambou M, Rio M et al (2012) A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of {NDUFS}4 mutations in patients with Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 1822:1062–1069. https://doi.org/10.1016/j.bbadis.2012.01.013
doi: 10.1016/j.bbadis.2012.01.013
Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. https://doi.org/10.1038/nprot.2006.62
doi: 10.1038/nprot.2006.62 pubmed: 17406264
Mejia EM, Hatch GM (2016) Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48:99–112. https://doi.org/10.1007/s10863-015-9601-4
doi: 10.1007/s10863-015-9601-4 pubmed: 25627476
Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph, and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Mitochondrial dysfunction in drug-induced toxicity. Wiley, New York, pp 325–352. https://doi.org/10.1002/9780470372531.ch12
doi: 10.1002/9780470372531.ch12
Potter M, Lodge TA, Morten KJ (2018) {CHAPTER} 8: monitoring of extracellular and intracellular O2 on a time-resolved fluorescence plate reader. In: Papkovsky DB, Dmitriev RI (eds) Quenched-phosphorescence detection of molecular oxygen: applications in life sciences; RSC detection science series no. 11. The Royal Society of Chemistry, London, pp 175–192
doi: 10.1039/9781788013451-00175
Simonnet H, Vigneron A, Pouysségur J (2014) Conventional techniques to monitor mitochondrial oxygen consumption. Methods Enzymol 542:151–161. https://doi.org/10.1016/B978-0-12-416618-9.00008-X
doi: 10.1016/B978-0-12-416618-9.00008-X pubmed: 24862265
Grassian AR, Coloff JL, Brugge JS (2011) Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol 76:313–324. https://doi.org/10.1101/sqb.2011.76.010967
doi: 10.1101/sqb.2011.76.010967 pubmed: 22105806
Yépez VA, Kremer LS, Iuso A et al (2018) {OCR}-Stats: robust estimation and statistical testing of mitochondrial respiration activities using Seahorse {XF}. Analyzer 13:e0199938. https://doi.org/10.1371/journal.pone.0199938
doi: 10.1371/journal.pone.0199938
Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. https://doi.org/10.1042/BJ20110162
doi: 10.1042/BJ20110162 pubmed: 21726199
Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2:287–295. https://doi.org/10.1038/nprot.2006.478
doi: 10.1038/nprot.2006.478 pubmed: 17406588
Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739
doi: 10.1016/S0021-9258(19)75283-1
Picard M, Taivassalo T, Ritchie D et al (2009) Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 6:e18317. https://doi.org/10.1371/journal.pone.0018317
doi: 10.1371/journal.pone.0018317
Zorzano A, Liesa M, Sebastián D et al (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21:566–574. https://doi.org/10.1016/j.semcdb.2010.01.002
doi: 10.1016/j.semcdb.2010.01.002 pubmed: 20079867
Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. Semin Cell Dev Biol 150:1283–1298. https://doi.org/10.1083/jcb.150.6.1283
doi: 10.1083/jcb.150.6.1283
Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117. https://doi.org/10.1016/j.tem.2015.12.001
doi: 10.1016/j.tem.2015.12.001 pubmed: 26754340
Piper HM, Sezer O, Schleyer M et al (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 17:885–896. https://doi.org/10.1016/s0022-2828(85)80102-4
doi: 10.1016/s0022-2828(85)80102-4 pubmed: 4046049
Affourtit C, Brand MD, Al Amir Dache Z et al (2018) Understanding mitochondrial complex I assembly in health and disease. Mitochondrion 9:818–819. https://doi.org/10.1042/EBC20170098
doi: 10.1042/EBC20170098
Gueguen N, Lefaucheur L, Ecolan P et al (2005) Ca 2+-activated myosin-ATPases, creatine and adenylate kinases regulate mitochondrial function according to myofibre type in rabbit. J Physiol 564:723–735. https://doi.org/10.1113/jphysiol.2005.083030
doi: 10.1113/jphysiol.2005.083030 pubmed: 15731190 pmcid: 1464461
Kuznetsov AV, Veksler V, Gellerich FN et al (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. https://doi.org/10.1038/nprot.2008.61
doi: 10.1038/nprot.2008.61 pubmed: 18536644
Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393
doi: 10.1016/S0021-9258(19)57189-7
Nicholls DG, Bernson VS (1977) Inter-relationships between proton electrochemical gradient, adenine-nucleotide phosphorylation potential and respiration, during substrate-level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs. Eur J Biochem 75:601–612. https://doi.org/10.1111/j.1432-1033.1977.tb11560.x
doi: 10.1111/j.1432-1033.1977.tb11560.x pubmed: 18347
Gnaiger E, Kemp RB (1990) Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta Bioenerg 1016:328–332. https://doi.org/10.1016/0005-2728(90)90164-Y
doi: 10.1016/0005-2728(90)90164-Y
Brown GC, Lakin-Thomas PL, Brand MD (1990) Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem 192:355–362. https://doi.org/10.1111/j.1432-1033.1990.tb19234.x
doi: 10.1111/j.1432-1033.1990.tb19234.x pubmed: 2209591
Affourtit C, Brand MD (2009) Chapter 23 measuring mitochondrial bioenergetics in INS-1E insulinoma cell. Methods Enzymol 457:405–424
doi: 10.1016/S0076-6879(09)05023-X
Kane MS, Paris A, Codron P et al (2018) Current mechanistic insights into the CCCP-induced cell survival response. Biochem Pharmacol 148:100–110. https://doi.org/10.1016/j.bcp.2017.12.018
doi: 10.1016/j.bcp.2017.12.018 pubmed: 29277693
Stepanova A, Konrad C, Manfredi G et al (2019) The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem 148:731–745. https://doi.org/10.1111/jnc.14654
doi: 10.1111/jnc.14654 pubmed: 30582748 pmcid: 7086484
Yadava N, Nicholls DG (2007) Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci 27:7310–7317. https://doi.org/10.1523/JNEUROSCI.0212-07.2007
doi: 10.1523/JNEUROSCI.0212-07.2007 pubmed: 17611283 pmcid: 6794596
Rodríguez-Enríquez S, Juárez O, Rodríguez-Zavala JS, Moreno-Sánchez R (2001) Multisite control of the Crabtree effect in ascites hepatoma cells. Eur J Biochem 268:2512–2519. https://doi.org/10.1046/j.1432-1327.2001.02140.x
doi: 10.1046/j.1432-1327.2001.02140.x pubmed: 11298771
Nicholls DG (2010) Mitochondrial ion circuits. Essays Biochem 47:25–35. https://doi.org/10.1042/bse0470025
doi: 10.1042/bse0470025 pubmed: 20533898
Zhang Q, Padayatti PS, Leung JH (2017) Proton-translocating nicotinamide nucleotide transhydrogenase: a structural perspective. Front Physiol 8:1089. https://doi.org/10.3389/fphys.2017.01089
doi: 10.3389/fphys.2017.01089 pubmed: 29312000 pmcid: 5742237
Poburko D, Demaurex N (2012) Regulation of the mitochondrial proton gradient by cytosolic Ca
doi: 10.1007/s00424-012-1106-y pubmed: 22526460
Cadenas S (2018) Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 1859:940–950. https://doi.org/10.1016/j.bbabio.2018.05.019
doi: 10.1016/j.bbabio.2018.05.019 pubmed: 29859845
Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15. https://doi.org/10.1046/j.1432-1327.1998.2520001.x
doi: 10.1046/j.1432-1327.1998.2520001.x pubmed: 9523706
Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A 79A:405–425. https://doi.org/10.1002/cyto.a.21061
doi: 10.1002/cyto.a.21061
Perry SW, Norman JP, Barbieri J et al (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50:98–115. https://doi.org/10.2144/000113610
doi: 10.2144/000113610 pubmed: 21486251 pmcid: 3115691
Ward MW, Rego AC, Frenguelli BG, Nicholls DG (2000) Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 20:7208–7219
doi: 10.1523/JNEUROSCI.20-19-07208.2000
Creed S, McKenzie M (2019) Measurement of mitochondrial membrane potential with the fluorescent dye tetramethylrhodamine methyl ester (TMRM). Methods Mol Biol 1928:69–76
doi: 10.1007/978-1-4939-9027-6_5
Rahn CA, Bombick DW, Doolittle DJ (1991) Assessment of mitochondrial membrane potential as an indicator of cytotoxicity. Fundam Appl Toxicol 16:435–448. https://doi.org/10.1016/0272-0590(91)90084-h
doi: 10.1016/0272-0590(91)90084-h pubmed: 1855617
Moreno AJ, Santos DL, Magalhães-Novais S, Oliveira PJ (2015) Measuring mitochondrial membrane potential with a tetraphenylphosphonium-selective electrode. Curr Protoc Toxicol 65:25.5.1–25.5.16. https://doi.org/10.1002/0471140856.tx2505s65
doi: 10.1002/0471140856.tx2505s65
Renner-Sattler K, Fasching M, Gnaiger E (2016) Mitochondrial Physiology Network 14.05(04):1–13, Technical note. https://wiki.oroboros.at/index.php/MiPNet14.05_TPP-mtMembranePotential
Trijbels JMF, Sengers RCA, Ruitenbeek W et al (1988) Disorders of the mitochondrial respiratory chain: clinical manifestations and diagnostic approach. Eur J Pediatr 148:92–97. https://doi.org/10.1007/BF00445910
doi: 10.1007/BF00445910 pubmed: 3069472
Carrozzo R, Dionisi-Vici C, Steuerwald U et al (2007) {SUCLA}2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874. https://doi.org/10.1093/brain/awl389
doi: 10.1093/brain/awl389 pubmed: 17301081
Chao De La Barca JM, Mirebeau-Prunier D, Moal V et al (2015) Metabolome and mass spectrometry: new biomedical analysis perspectives. Ann Biol Clin (Paris) 73:126–130. https://doi.org/10.1684/abc.2014.1020
doi: 10.1684/abc.2014.1020
Esterhuizen K, van der Westhuizen FH, Louw R (2017) Metabolomics of mitochondrial disease. Mitochondrion 35:97–110. https://doi.org/10.1016/j.mito.2017.05.012
doi: 10.1016/j.mito.2017.05.012 pubmed: 28576558
Kouassi Nzoughet J, Chao de la Barca JM, Guehlouz K et al (2019) Nicotinamide deficiency in primary open-angle glaucoma. Investig Opthalmol Vis Sci 60:2509. https://doi.org/10.1167/iovs.19-27099
doi: 10.1167/iovs.19-27099
Nikkanen J, Forsström S, Euro L et al (2016) Mitochondrial {DNA} replication defects disturb cellular {dNTP} pools and remodel one-carbon metabolism. Cell Metab 23:635–648. https://doi.org/10.1016/j.cmet.2016.01.019
doi: 10.1016/j.cmet.2016.01.019 pubmed: 26924217
Khan NA, Nikkanen J, Yatsuga S et al (2017) mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab 26:419–428.e5. https://doi.org/10.1016/j.cmet.2017.07.007
doi: 10.1016/j.cmet.2017.07.007 pubmed: 28768179
Bocca C, Kane MS, Veyrat-Durebex C et al (2018) The metabolomic bioenergetic signature of opa1-disrupted mouse embryonic fibroblasts highlights aspartate deficiency. Sci Rep 8:11528. https://doi.org/10.1038/s41598-018-29972-9
doi: 10.1038/s41598-018-29972-9 pubmed: 30068998 pmcid: 6070520
Rahman J, Rahman S (2018) Mitochondrial medicine in the omics era. Lancet 391:2560–2574. https://doi.org/10.1016/S0140-6736(18)30727-X
doi: 10.1016/S0140-6736(18)30727-X pubmed: 29903433
Tripodi F, Castoldi A, Nicastro R et al (2018) Methionine supplementation stimulates mitochondrial respiration. Biochim Biophys Acta, Mol Cell Res 1865:1901–1913. https://doi.org/10.1016/j.bbamcr.2018.09.007
doi: 10.1016/j.bbamcr.2018.09.007
Andréasson C, Ott M, Büttner S (2019) Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 20:e47865. https://doi.org/10.15252/embr.201947865
doi: 10.15252/embr.201947865 pubmed: 31531937 pmcid: 6776902
Yi H-S, Chang JY, Shong M (2018) The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 61:R91–R105. https://doi.org/10.1530/JME-18-0005
doi: 10.1530/JME-18-0005 pubmed: 30307158 pmcid: 6145237
Mick E, Titov DV, Skinner OS et al (2020) Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. elife 9:e49178. https://doi.org/10.7554/eLife.49178
doi: 10.7554/eLife.49178 pubmed: 32463360 pmcid: 7255802
Miliotis S, Nicolalde B, Ortega M et al (2019) Forms of extracellular mitochondria and their impact in health. Mitochondrion 48:16–30. https://doi.org/10.1016/j.mito.2019.02.002
doi: 10.1016/j.mito.2019.02.002 pubmed: 30771504
Al Amir Dache Z, Otandault A, Tanos R et al (2020) Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34:3616–3630. https://doi.org/10.1096/fj.201901917RR
doi: 10.1096/fj.201901917RR pubmed: 31957088
Hayakawa K, Chan SJ, Mandeville ET et al (2018) Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells 36:1404–1410. https://doi.org/10.1002/stem.2856
doi: 10.1002/stem.2856 pubmed: 29781122
Caicedo A, Aponte PM, Cabrera F et al (2017) Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int 2017:7610414. https://doi.org/10.1155/2017/7610414
doi: 10.1155/2017/7610414 pubmed: 28751917 pmcid: 5511681

Auteurs

Naig Gueguen (N)

UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.
Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.

Guy Lenaers (G)

UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.

Pascal Reynier (P)

UMR CNRS 6015-INSERM U1083, MitoVasc Institute, University of Angers, Angers, France.
Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France.

Volkmar Weissig (V)

Department of Pharmaceutical Sciences and Nanocenter of Excellence, Midwestern University College of Pharmacy at Glendale, Glendale, AZ, USA.

Marvin Edeas (M)

Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France. marvin.edeas@inserm.fr.
Laboratory of Excellence GR-Ex, Paris, France. marvin.edeas@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH