Assessment of Mitochondrial Cell Metabolism by Respiratory Chain Electron Flow Assays.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 1 6 2021
pubmed: 2 6 2021
medline: 9 7 2021
Statut: ppublish

Résumé

Cellular energy metabolism is regulated by complex metabolic pathways. Although anaerobic glycolysis was reported as a primary source of energy in cancer leading to a high rate of lactate production, current evidence shows that the main energy source supporting cancer cell metabolism relies on mitochondrial metabolism. Mitochondria are the key organelle maintaining optimal cellular energy levels. MitoPlate™ S-1 provides a highly reproducible bioenergetics tool to analyze the electron flow rate in live cells. Measuring the rates of electron flow into and through the electron transport chain using different NADH and FADH

Identifiants

pubmed: 34060037
doi: 10.1007/978-1-0716-1266-8_9
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

129-141

Références

Corbet C, Feron O (2017) Cancer cell metabolism and mitochondria: nutrient plasticity for TCA cycle fueling. Biochim Biophys Acta Rev Cancer 1868:7–15
doi: 10.1016/j.bbcan.2017.01.002
Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478
doi: 10.1007/s12013-013-9750-1
Speijer D (2011) Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH(2)/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays 33:88–94
doi: 10.1002/bies.201000097
Stanley IA, Ribeiro SM, Gimenez-Cassina A et al (2014) Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol 24:118–127
doi: 10.1016/j.tcb.2013.07.010
Sharma R, Ramanathan A (2020) The aging metabolome- biomarkers to hub metabolites. Proteomics 20(5-6):e1800407
doi: 10.1002/pmic.201800407
Acin-Perez R, Carrascoso I, Baixauli F et al (2014) ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab 19:1020–1033
doi: 10.1016/j.cmet.2014.04.015
Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13
doi: 10.1042/BJ20081386
Stefanatos R, Sanz A (2018) The role of mitochondrial ROS in the aging brain. FEBS Lett 592:743–758
doi: 10.1002/1873-3468.12902
van Opbergen CJM, den Braven L, Delmar M et al (2019) Mitochondrial dysfunction as substrate for arrhythmogenic cardiomyopathy: a search for new disease mechanisms. Front Physiol 10:1496
doi: 10.3389/fphys.2019.01496
Masschelin PM, Cox AR, Chernis N et al (2019) The impact of oxidative stress on adipose tissue energy balance. Front Physiol 10:1638
doi: 10.3389/fphys.2019.01638
Rangaraju V, Lewis TL Jr, Hirabayashi Y et al (2019) Pleiotropic mitochondria: the influence of mitochondria on neuronal development and disease. J Neurosci 39:8200–8208
doi: 10.1523/JNEUROSCI.1157-19.2019
Perillo B, Di Donato M, Pezone A et al (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52(2):192–203
doi: 10.1038/s12276-020-0384-2
Radogna F, Cerella C, Gaigneaux A et al (2016) Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene 35:3839–3853
doi: 10.1038/onc.2015.455
Anderson NM, Mucka P, Kern JG et al (2018) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–237
doi: 10.1007/s13238-017-0451-1
Cerella C, Radogna F, Dicato M et al (2013) Natural compounds as regulators of the cancer cell metabolism. Int J Cell Biol 2013:639401
doi: 10.1155/2013/639401
Schnekenburger M, Florean C, Dicato M et al (2016) Epigenetic alterations as a universal feature of cancer hallmarks and a promising target for personalized treatments. Curr Top Med Chem 16:745–776
doi: 10.2174/1568026615666150825141330
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
doi: 10.1016/j.cell.2011.02.013
Gonfloni S, Iannizzotto V, Maiani E et al (2014) P53 and Sirt1: routes of metabolism and genome stability. Biochem Pharmacol 92:149–156
doi: 10.1016/j.bcp.2014.08.034
Aminzadeh S, Vidali S, Sperl W et al (2015) Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 4:20–32
pubmed: 26835356 pmcid: 4729069
Xiao D, Ren P, Su H et al (2015) Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 6:40655–40666
doi: 10.18632/oncotarget.5821
Adeva-Andany MM, Carneiro-Freire N, Seco-Filgueira M et al (2019) Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion 46:73–90
doi: 10.1016/j.mito.2018.02.009
Cerella C, Gaigneaux A, Dicato M et al (2015) Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 356:251–262
doi: 10.1016/j.canlet.2014.02.008
Cerella C, Dicato M, Diederich M (2014) Modulatory roles of glycolytic enzymes in cell death. Biochem Pharmacol 92:22–30
doi: 10.1016/j.bcp.2014.07.005
Parey K, Wirth C, Vonck J et al (2020) Respiratory complex I - structure, mechanism and evolution. Curr Opin Struct Biol 63:1–9
doi: 10.1016/j.sbi.2020.01.004
Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570
doi: 10.1126/science.1230381
He S, Liu Z, Oh DY et al (2013) MYCN and the epigenome. Front Oncol 3:1
doi: 10.3389/fonc.2013.00001
Harenza JL, Diamond MA, Adams RN et al (2017) Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines. Sci Data 4:170033
doi: 10.1038/sdata.2017.33
R Development Core Team (2010) R: a language and environment for statistical computing
RStudio Team (2015) RStudio: integrated development for R
Rapizzi E, Ercolino T, Fucci R et al (2014) Succinate dehydrogenase subunit B mutations modify human neuroblastoma cell metabolism and proliferation. Horm Cancer 5:174–184
doi: 10.1007/s12672-014-0172-3
Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85
doi: 10.1016/j.ccr.2004.11.022

Auteurs

Flavia Radogna (F)

Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.

Déborah Gérard (D)

Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.

Mario Dicato (M)

Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.

Marc Diederich (M)

College of Pharmacy, Seoul National University, Seoul, South Korea. marcdiederich@snu.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH