Genome-Scale Metabolic Model of
Caldicellulosiruptor
bio-based chemical production
central carbon metabolism
metabolic engineering
metabolic modeling
redox balance
Journal
mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636
Informations de publication
Date de publication:
29 Jun 2021
29 Jun 2021
Historique:
pubmed:
2
6
2021
medline:
2
6
2021
entrez:
1
6
2021
Statut:
ppublish
Résumé
Metabolic modeling was used to examine potential bottlenecks that could be encountered for metabolic engineering of the cellulolytic extreme thermophile Caldicellulosiruptor bescii to produce bio-based chemicals from plant biomass. The model utilizes subsystems-based genome annotation, targeted reconstruction of carbohydrate utilization pathways, and biochemical and physiological experimental validations. Specifically, carbohydrate transport and utilization pathways involving 160 genes and their corresponding functions were incorporated, representing the utilization of C5/C6 monosaccharides, disaccharides, and polysaccharides such as cellulose and xylan. To illustrate its utility, the model predicted that optimal production from biomass-based sugars of the model product, ethanol, was driven by ATP production, redox balancing, and proton translocation, mediated through the interplay of an ATP synthase, a membrane-bound hydrogenase, a bifurcating hydrogenase, and a bifurcating NAD- and NADP-dependent oxidoreductase. These mechanistic insights guided the design and optimization of new engineering strategies for product optimization, which were subsequently tested in the
Identifiants
pubmed: 34060912
doi: 10.1128/mSystems.01351-20
pmc: PMC8269263
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e0135120Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM008776
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM133366
Pays : United States
Références
J Biol Chem. 2017 Sep 1;292(35):14603-14616
pubmed: 28705933
J Bacteriol. 1987 Sep;169(9):4196-202
pubmed: 3114237
Biotechnol Bioeng. 2020 Dec;117(12):3799-3808
pubmed: 32770740
J Biol Chem. 2019 Jun 21;294(25):9995-10005
pubmed: 31097544
mSystems. 2021 Jun 29;6(3):e0134520
pubmed: 34060910
Biotechnol Biofuels. 2013 Jun 03;6(1):85
pubmed: 23731756
Appl Environ Microbiol. 1988 Jan;54(1):204-211
pubmed: 16347527
Front Microbiol. 2017 Nov 23;8:2325
pubmed: 29218041
PLoS One. 2013 May 03;8(5):e62881
pubmed: 23658781
Microbiologyopen. 2019 Feb;8(2):e00639
pubmed: 29797457
Plant Physiol. 1988 Feb;86(2):325-8
pubmed: 16665904
Biotechnol Biofuels. 2015 Oct 06;8:163
pubmed: 26442761
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432
pubmed: 30357350
Bioresour Technol. 2014;152:384-92
pubmed: 24316482
Biotechnol Biofuels. 2017 May 2;10:108
pubmed: 28469704
Appl Environ Microbiol. 2016 Jun 30;82(14):4421-4428
pubmed: 27208106
Appl Environ Microbiol. 2009 Jul;75(14):4762-9
pubmed: 19465524
Extremophiles. 2020 Jan;24(1):1-15
pubmed: 31359136
J Bacteriol. 2009 Jul;191(13):4451-7
pubmed: 19411328
Anaerobe. 2017 Oct;47:86-88
pubmed: 28458033
Mol Microbiol. 2017 Jun;104(5):869-881
pubmed: 28295726
Eur J Biochem. 1981 Apr;115(2):353-8
pubmed: 7016536
Nat Biotechnol. 2008 Feb;26(2):169-72
pubmed: 18259168
J Biochem. 2008 Aug;144(2):245-50
pubmed: 18477629
Biochem Int. 1989 Dec;19(6):1253-64
pubmed: 2635862
Front Microbiol. 2012 May 01;3:163
pubmed: 22557999
Methods Mol Biol. 2018;1716:131-150
pubmed: 29222752
Appl Environ Microbiol. 2017 Jun 30;83(14):
pubmed: 28476773
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
Appl Environ Microbiol. 2015 Oct;81(20):7159-70
pubmed: 26253670
PLoS One. 2015 Jun 19;10(6):e0130547
pubmed: 26091499
Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-2015
pubmed: 19801388
Protein Eng Des Sel. 2015 Jan;28(1):1-8
pubmed: 25476267
J Gen Microbiol. 1969 Nov;59(1):97-101
pubmed: 5365367
Anal Biochem. 1979 Jul 15;96(2):279-81
pubmed: 474956
Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361
pubmed: 27899662
Methods Enzymol. 2001;331:144-58
pubmed: 11265457
BMC Syst Biol. 2015 Jun 26;9:30
pubmed: 26111937
J Bacteriol. 1954 Apr;67(4):505-6
pubmed: 13152068
Appl Microbiol Biotechnol. 2016 Feb;100(4):1823-1831
pubmed: 26536872
Appl Environ Microbiol. 2014 Aug;80(16):5001-11
pubmed: 24907337
J Bacteriol. 2010 Oct;192(19):5115-23
pubmed: 20675474
PLoS Comput Biol. 2016 Feb 01;12(2):e1004732
pubmed: 26828591
Nucleic Acids Res. 2016 Jan 4;44(D1):D372-9
pubmed: 26546518
J Ind Microbiol Biotechnol. 2020 Aug;47(8):585-597
pubmed: 32783103
Front Microbiol. 2015 Nov 05;6:1209
pubmed: 26594201
Chem Rev. 2018 Apr 11;118(7):3862-3886
pubmed: 29561602
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8931-6
pubmed: 24889625
Archaea. 2015 Oct 12;2015:912582
pubmed: 26543406
Nat Biotechnol. 2020 Mar;38(3):272-276
pubmed: 32123384
Front Bioeng Biotechnol. 2020 Aug 21;8:772
pubmed: 32974289
Brief Bioinform. 2019 Jul 19;20(4):1085-1093
pubmed: 29447345
Curr Opin Biotechnol. 2008 Jun;19(3):210-7
pubmed: 18524567
Biotechnol J. 2010 Jul;5(7):726-38
pubmed: 20665645
mBio. 2012 Dec 26;4(1):e00406-12
pubmed: 23269825
Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314
pubmed: 30418610
Biochemistry (Mosc). 2008 Jun;73(6):686-92
pubmed: 18620535
Metab Eng Commun. 2018 May 28;7:e00073
pubmed: 30009131