CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies.

Artificial intelligence Radiomics Sarcoma Texture analysis

Journal

Insights into imaging
ISSN: 1869-4101
Titre abrégé: Insights Imaging
Pays: Germany
ID NLM: 101532453

Informations de publication

Date de publication:
02 Jun 2021
Historique:
received: 15 02 2021
accepted: 05 05 2021
entrez: 2 6 2021
pubmed: 3 6 2021
medline: 3 6 2021
Statut: epublish

Résumé

Feature reproducibility and model validation are two main challenges of radiomics. This study aims to systematically review radiomic feature reproducibility and predictive model validation strategies in studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus on these aspects in radiomic workflows and facilitate clinical transferability. Out of 278 identified papers, forty-nine papers published between 2008 and 2020 were included. They dealt with radiomics of bone (n = 12) or soft-tissue (n = 37) tumors. Eighteen (37%) studies included a feature reproducibility analysis. Inter-/intra-reader segmentation variability was the theme of reproducibility analysis in 16 (33%) investigations, outnumbering the analyses focused on image acquisition or post-processing (n = 2, 4%). The intraclass correlation coefficient was the most commonly used statistical method to assess reproducibility, which ranged from 0.6 and 0.9. At least one machine learning validation technique was used for model development in 25 (51%) papers, and K-fold cross-validation was the most commonly employed. A clinical validation of the model was reported in 19 (39%) papers. It was performed using a separate dataset from the primary institution (i.e., internal validation) in 14 (29%) studies and an independent dataset related to different scanners or from another institution (i.e., independent validation) in 5 (10%) studies. The issues of radiomic feature reproducibility and model validation varied largely among the studies dealing with musculoskeletal sarcomas and should be addressed in future investigations to bring the field of radiomics from a preclinical research area to the clinical stage.

Sections du résumé

BACKGROUND BACKGROUND
Feature reproducibility and model validation are two main challenges of radiomics. This study aims to systematically review radiomic feature reproducibility and predictive model validation strategies in studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas. The ultimate goal is to promote achieving a consensus on these aspects in radiomic workflows and facilitate clinical transferability.
RESULTS RESULTS
Out of 278 identified papers, forty-nine papers published between 2008 and 2020 were included. They dealt with radiomics of bone (n = 12) or soft-tissue (n = 37) tumors. Eighteen (37%) studies included a feature reproducibility analysis. Inter-/intra-reader segmentation variability was the theme of reproducibility analysis in 16 (33%) investigations, outnumbering the analyses focused on image acquisition or post-processing (n = 2, 4%). The intraclass correlation coefficient was the most commonly used statistical method to assess reproducibility, which ranged from 0.6 and 0.9. At least one machine learning validation technique was used for model development in 25 (51%) papers, and K-fold cross-validation was the most commonly employed. A clinical validation of the model was reported in 19 (39%) papers. It was performed using a separate dataset from the primary institution (i.e., internal validation) in 14 (29%) studies and an independent dataset related to different scanners or from another institution (i.e., independent validation) in 5 (10%) studies.
CONCLUSIONS CONCLUSIONS
The issues of radiomic feature reproducibility and model validation varied largely among the studies dealing with musculoskeletal sarcomas and should be addressed in future investigations to bring the field of radiomics from a preclinical research area to the clinical stage.

Identifiants

pubmed: 34076740
doi: 10.1186/s13244-021-01008-3
pii: 10.1186/s13244-021-01008-3
pmc: PMC8172744
doi:

Types de publication

Journal Article

Langues

eng

Pagination

68

Références

Eur J Radiol. 2020 Aug;129:109066
pubmed: 32502729
Eur Radiol. 2020 May;30(5):2413-2424
pubmed: 31953663
J Chiropr Med. 2016 Jun;15(2):155-63
pubmed: 27330520
AJR Am J Roentgenol. 2019 Mar;212(3):520-528
pubmed: 30645163
Eur J Radiol. 2020 Jul;128:109043
pubmed: 32438261
Eur Radiol. 2020 Dec;30(12):6858-6866
pubmed: 32591885
BMC Med Imaging. 2019 Aug 15;19(1):67
pubmed: 31416421
Adv Radiat Oncol. 2019 Feb 23;4(2):413-421
pubmed: 31011687
Biomed Res Int. 2020 May 11;2020:9078603
pubmed: 32462033
Eur J Radiol. 2019 Sep;118:81-87
pubmed: 31439263
Cancer Imaging. 2020 Oct 28;20(1):78
pubmed: 33115533
J Magn Reson Imaging. 2020 Feb;51(2):435-445
pubmed: 31215096
Radiother Oncol. 2019 Jun;135:187-196
pubmed: 30961895
Radiol Oncol. 2019 Sep 24;53(3):300-306
pubmed: 31553702
J Bone Oncol. 2019 Oct 04;19:100263
pubmed: 31667064
Br J Radiol. 2020 Jun;93(1110):20190794
pubmed: 32105502
Ann Oncol. 2018 Oct 1;29(Suppl 4):iv79-iv95
pubmed: 30285218
PLoS Med. 2009 Jul 21;6(7):e1000097
pubmed: 19621072
Medicine (Baltimore). 2020 Jul 2;99(27):e20880
pubmed: 32629676
Diagn Interv Radiol. 2019 Nov;25(6):485-495
pubmed: 31650960
Radiology. 2016 Feb;278(2):563-77
pubmed: 26579733
Magn Reson Imaging. 2008 Nov;26(9):1316-22
pubmed: 18448302
Eur J Radiol. 2021 Apr;137:109586
pubmed: 33610852
Eur Radiol. 2018 Feb;28(2):468-477
pubmed: 28884356
J Magn Reson Imaging. 2019 Dec;50(6):1773-1788
pubmed: 30980697
PLoS One. 2017 Jul 14;12(7):e0181339
pubmed: 28708850
Sarcoma. 2020 Jan 7;2020:7163453
pubmed: 31997918
Abdom Imaging. 2015 Aug;40(6):1705-12
pubmed: 25526682
Sci Rep. 2020 Sep 23;10(1):15496
pubmed: 32968131
Radiology. 2020 May;295(2):328-338
pubmed: 32154773
Eur J Radiol. 2019 Sep;118:194-199
pubmed: 31439242
Eur J Radiol. 2020 Nov;132:109283
pubmed: 32980727
J Magn Reson Imaging. 2020 Mar;51(3):791-797
pubmed: 31486565
Clin Cancer Res. 2018 Aug 1;24(15):3492-3499
pubmed: 29581134
Cancer Lett. 2020 Jul 1;481:55-62
pubmed: 32251707
Eur J Radiol. 2020 Oct;131:109266
pubmed: 32971431
J Magn Reson Imaging. 2020 Sep;52(3):873-882
pubmed: 32112598
Surg Oncol. 2019 Sep;30:92-97
pubmed: 31500794
EBioMedicine. 2019 Oct;48:332-340
pubmed: 31522983
Ann Oncol. 2018 Oct 1;29(Suppl 4):iv51-iv67
pubmed: 29846498
J Magn Reson Imaging. 2020 Jul;52(1):282-297
pubmed: 31922323
AJR Am J Roentgenol. 2020 Dec;215(6):1539-1548
pubmed: 32991215
Radiol Artif Intell. 2020 Mar 25;2(2):e200029
pubmed: 33937821
AJR Am J Roentgenol. 2020 Jan;214(1):129-136
pubmed: 31613661
Eur Radiol. 2019 Apr;29(4):1841-1847
pubmed: 30280245
Eur Radiol. 2021 Mar;31(3):1526-1535
pubmed: 32876837
Acad Radiol. 2014 Sep;21(9):1185-94
pubmed: 25107867
Phys Med Biol. 2015 Jul 21;60(14):5471-96
pubmed: 26119045
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1143-1158
pubmed: 30170872
Radiographics. 2017 Sep-Oct;37(5):1483-1503
pubmed: 28898189
Acad Radiol. 2019 Sep;26(9):1262-1268
pubmed: 30377057
J Magn Reson Imaging. 2018 Mar;47(3):829-840
pubmed: 28653477
Phys Med Biol. 2020 Aug 27;65(17):175006
pubmed: 32554891
Phys Med Biol. 2017 Oct 27;62(22):8536-8565
pubmed: 28872054
EBioMedicine. 2018 Aug;34:27-34
pubmed: 30026116
Invest Radiol. 2018 Nov;53(11):663-672
pubmed: 29863601
AJR Am J Roentgenol. 2020 Oct;215(4):963-969
pubmed: 32755226
J Magn Reson Imaging. 2020 Jan;51(1):155-163
pubmed: 31169956
J Comput Assist Tomogr. 2015 Jul-Aug;39(4):607-12
pubmed: 25793653
Br J Surg. 2019 Dec;106(13):1800-1809
pubmed: 31747074
Clin Radiol. 2021 Feb;76(2):158.e19-158.e25
pubmed: 33293024
J Magn Reson Imaging. 2019 Aug;50(2):497-510
pubmed: 30569552
Cancer Imaging. 2020 Jan 14;20(1):7
pubmed: 31937372
NMR Biomed. 2021 Feb;34(2):e4426
pubmed: 33078438
J Magn Reson Imaging. 2010 Mar;31(3):680-9
pubmed: 20187212
Skeletal Radiol. 2020 Nov;49(11):1719-1729
pubmed: 32424704
Medicine (Baltimore). 2020 Jan;99(2):e18742
pubmed: 31914093
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929

Auteurs

Salvatore Gitto (S)

Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Riccardo Galeazzi 4, 20161, Milan, Italy. sal.gitto@gmail.com.

Renato Cuocolo (R)

Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy.
Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", Naples, Italy.

Domenico Albano (D)

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy.

Francesco Morelli (F)

ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.

Lorenzo Carlo Pescatori (LC)

Assistance Publique - Hôpitaux de Paris (AP-HP), Service d'Imagerie Médicale, CHU Henri Mondor, Créteil, France.

Carmelo Messina (C)

Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Massimo Imbriaco (M)

Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli "Federico II", Naples, Italy.

Luca Maria Sconfienza (LM)

Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Classifications MeSH