T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours.
Journal
Nature biomedical engineering
ISSN: 2157-846X
Titre abrégé: Nat Biomed Eng
Pays: England
ID NLM: 101696896
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
11
05
2020
accepted:
26
04
2021
pubmed:
5
6
2021
medline:
21
1
2022
entrez:
4
6
2021
Statut:
ppublish
Résumé
The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.
Identifiants
pubmed: 34083764
doi: 10.1038/s41551-021-00737-6
pii: 10.1038/s41551-021-00737-6
pmc: PMC7611996
mid: EMS123298
doi:
Substances chimiques
Cxcr6 protein, mouse
0
Receptors, CXCR6
0
Receptors, Chemokine
0
Mesothelin
J27WDC343N
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1246-1260Subventions
Organisme : NIAID NIH HHS
ID : R01 AI123349
Pays : United States
Organisme : European Research Council
ID : 866411
Pays : International
Organisme : NCI NIH HHS
ID : R00 CA215604
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA240239
Pays : United States
Organisme : European Research Council
ID : 756017
Pays : International
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).
pubmed: 25838374
pmcid: 6295668
doi: 10.1126/science.aaa4967
Kobold, S. et al. Immunotherapy in tumors. Dtsch. Ärztebl. Int. 112, 809–815 (2015).
pubmed: 26667979
pmcid: 4709658
Sheridan, C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat. Biotechnol. 35, 691–693 (2017).
pubmed: 28787408
doi: 10.1038/nbt0817-691
Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2)—specific chimeric antigen recpetor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).
pubmed: 25800760
pmcid: 4429176
doi: 10.1200/JCO.2014.58.0225
Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).
pubmed: 25378643
pmcid: 4373413
doi: 10.1126/scitranslmed.3010162
Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).
pubmed: 28029927
pmcid: 5390684
doi: 10.1056/NEJMoa1610497
O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).
pubmed: 28724573
pmcid: 5762203
doi: 10.1126/scitranslmed.aaa0984
Tchou, J. et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017).
pubmed: 29109077
pmcid: 5712264
doi: 10.1158/2326-6066.CIR-17-0189
Akbay, E. A. et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J. Thorac. Oncol. 12, 1268–1279 (2017).
pubmed: 28483607
pmcid: 5532066
doi: 10.1016/j.jtho.2017.04.017
Bauer, C. A. et al. Dynamic T
pubmed: 24812664
pmcid: 4089459
doi: 10.1172/JCI66375
Linke, B. et al. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 122, 154081 (2019).
pubmed: 28647282
doi: 10.1016/j.cyto.2017.06.008
Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).
pubmed: 31400197
doi: 10.1093/bioinformatics/btz625
Tokarew, N., Ogonek, J., Endres, S., von Bergwelt-Baildon, M. & Kobold, S.Teaching an old dog new tricks: next-generation CAR T cells. Br. J. Cancer 120, 26–37 (2019).
pubmed: 30413825
doi: 10.1038/s41416-018-0325-1
Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).
pubmed: 31715131
pmcid: 7171534
doi: 10.1016/j.ccell.2019.09.006
Rapp, M. et al. C-C chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer. OncoImmunology 5, e1105428 (2016).
pubmed: 27195186
doi: 10.1080/2162402X.2015.1105428
Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).
pubmed: 29637711
pmcid: 6120486
doi: 10.1111/febs.14466
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).
pubmed: 15322536
doi: 10.1038/nm1093
Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).
pubmed: 28187291
pmcid: 5553442
doi: 10.1016/j.cell.2017.01.016
Garetto, S. et al. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model. Oncotarget 7, 43010–43026 (2016).
pubmed: 27177227
pmcid: 5190004
doi: 10.18632/oncotarget.9280
Siddiqui, I., Erreni, M., van Brakel, M., Debets, R. & Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J. Immunother. Cancer 4, 21 (2016).
pubmed: 27096098
pmcid: 4836203
doi: 10.1186/s40425-016-0125-1
Muller, N. et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J. Immunother. 38, 197–210 (2015).
pubmed: 25962108
pmcid: 4428685
doi: 10.1097/CJI.0000000000000082
Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).
pubmed: 21610146
pmcid: 3612507
doi: 10.1158/1078-0432.CCR-11-0351
Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010).
pubmed: 20889916
pmcid: 3476703
doi: 10.1158/1078-0432.CCR-10-0712
Shimaoka, T. et al. Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J. Leukoc. Biol. 75, 267–274 (2004).
pubmed: 14634054
doi: 10.1189/jlb.1003465
Kobold, S. et al. Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J. Natl Cancer Inst. 107, djv146 (2015).
pubmed: 26105028
pmcid: 4609553
doi: 10.1093/jnci/djv146
Li, K. et al. Impact of chemokine receptor CXCR3 on tumor-infiltrating lymphocyte recruitment associated with favorable prognosis in advanced gastric cancer. Int. J. Clin. Exp. Pathol. 8, 14725–14732 (2015).
pubmed: 26823797
pmcid: 4713583
Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).
pubmed: 31892341
pmcid: 6937944
doi: 10.1186/s13059-019-1906-x
Deng, L., Chen, N., Li, Y., Zheng, H. & Lei, Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta 1806, 42–49 (2010).
pubmed: 20122997
Wente, M. N. et al. Expression and potential function of the CXC chemokine CXCL16 in pancreatic ductal adenocarcinoma. Int. J. Oncol. 33, 297–308 (2008).
pubmed: 18636150
Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).
pubmed: 15634930
doi: 10.4049/jimmunol.174.2.1055
Rataj, F. et al. PD1–CD28 fusion protein enables CD4
Sato, T. et al. Role for CXCR6 in recruitment of activated CD8
pubmed: 15611250
doi: 10.4049/jimmunol.174.1.277
Unutmaz, D. et al. The primate lentiviral receptor Bonzo/STRL33 is coordinately regulated with CCR5 and its expression pattern is conserved between human and mouse. J. Immunol. 165, 3284–3292 (2000).
pubmed: 10975845
doi: 10.4049/jimmunol.165.6.3284
Karches, C. H. et al. Bispecific antibodies enable synthetic agonistic receptor-transduced T cells for tumor immunotherapy. Clin. Cancer Res. 25, 5890–5900 (2019).
pubmed: 31285373
pmcid: 7611266
doi: 10.1158/1078-0432.CCR-18-3927
Paulos, C. M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8
pubmed: 17657310
pmcid: 1924500
doi: 10.1172/JCI32205
Kobold, S. et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J. Natl Cancer Inst. 107, 364 (2015).
pubmed: 25424197
doi: 10.1093/jnci/dju364
Chinnasamy, D. et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 18, 1672–1683 (2012).
pubmed: 22291136
pmcid: 6390958
doi: 10.1158/1078-0432.CCR-11-3050
Jin, L. et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat. Commun. 10, 4016 (2019).
pubmed: 31488817
pmcid: 6728370
doi: 10.1038/s41467-019-11869-4
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
pubmed: 26909576
doi: 10.1038/nature16965
Schizas, D. et al. Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treat. Rev. 86, 102016 (2020).
pubmed: 32247999
doi: 10.1016/j.ctrv.2020.102016
Hartmann, N. et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 20, 3422–3433 (2014).
pubmed: 24763614
doi: 10.1158/1078-0432.CCR-13-2972
Kocher, H. M. et al. Phase I clinical trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic cancer. Nat. Commun. 11, 4841 (2020).
pubmed: 32973176
pmcid: 7518421
doi: 10.1038/s41467-020-18636-w
Alvarez, R. et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926–933 (2013).
pubmed: 23907428
pmcid: 3749580
doi: 10.1038/bjc.2013.415
Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).
pubmed: 25979873
pmcid: 4506263
doi: 10.1158/0008-5472.CAN-14-3041
Matloubian, M., David, A., Engel, S., Ryan, J. E. & Cyster, J. G. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat. Immunol. 1, 298–304 (2000).
pubmed: 11017100
doi: 10.1038/79738
Linke, B. et al. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium. Cytokine 122, 154081 (2019).
pubmed: 28647282
doi: 10.1016/j.cyto.2017.06.008
Collado, A. et al. Functional role of endothelial CXCL16/CXCR6–platelet–leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc. Res. 114, 1764–1775 (2018).
pubmed: 29800106
doi: 10.1093/cvr/cvy135
Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017).
pubmed: 28346400
pmcid: 5446300
doi: 10.1038/labinvest.2017.25
Agostini, C. et al. Role for CXCR6 and its ligand CXCL16 in the pathogenesis of T-cell alveolitis in sarcoidosis. Am. J. Respir. Crit. Care Med. 172, 1290–1298 (2005).
pubmed: 16100013
doi: 10.1164/rccm.200501-142OC
Oldham, K. A. et al. T lymphocyte recruitment into renal cell carcinoma tissue: a role for chemokine receptors CXCR3, CXCR6, CCR5, and CCR6. Eur. Urol. 61, 385–394 (2012).
pubmed: 22079021
doi: 10.1016/j.eururo.2011.10.035
La Porta, C. A. CXCR6: the role of environment in tumor progression. Challenges for therapy. Stem Cell Rev. 8, 1282–1285 (2012).
doi: 10.1007/s12015-012-9383-6
Allaoui, R. et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat. Commun. 7, 13050 (2016).
pubmed: 27725631
pmcid: 5062608
doi: 10.1038/ncomms13050
Chalabi-Dchar, M. et al. Loss of somatostatin receptor subtype 2 promotes growth of KRAS-induced pancreatic tumors in mice by activating PI3K signaling and overexpression of CXCL16. Gastroenterology 148, 1452–1465 (2015).
pubmed: 25683115
doi: 10.1053/j.gastro.2015.02.009
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
pubmed: 31197017
pmcid: 6727976
doi: 10.1158/2159-8290.CD-19-0094
Hu, W., Liu, Y., Zhou, W., Si, L. & Ren, L. CXCL16 and CXCR6 are coexpressed in human lung cancer in vivo and mediate the invasion of lung cancer cell lines in vitro. PLoS ONE 9, e99056 (2014).
pubmed: 24897301
pmcid: 4045941
doi: 10.1371/journal.pone.0099056
Slaga, D. et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci. Transl. Med. 10, eaat5775 (2018).
pubmed: 30333240
doi: 10.1126/scitranslmed.aat5775
Morello, A., Sadelain, M. & Adusumilli, P. S. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 6, 133–146 (2016).
pubmed: 26503962
doi: 10.1158/2159-8290.CD-15-0583
Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).
pubmed: 29567081
doi: 10.1053/j.gastro.2018.03.029
Fujita, K. et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. 1, 501–507 (1995).
pubmed: 9816009
Hall, M. et al. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. J. Immunother. Cancer 4, 61 (2016).
pubmed: 27777771
pmcid: 5067894
doi: 10.1186/s40425-016-0164-7
Nanki, T. et al. Pathogenic role of the CXCL16–CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum. 52, 3004–3014 (2005).
pubmed: 16200580
doi: 10.1002/art.21301
Akce, M., Zaidi, M. Y., Waller, E. K., El-Rayes, B. F. & Lesinski, G. B. The potential of CAR T cell therapy in pancreatic cancer. Front. Immunol. 9, 2166 (2018).
pubmed: 30319627
pmcid: 6167429
doi: 10.3389/fimmu.2018.02166
Jacobs, C. et al. An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int. J. Cancer 128, 897–907 (2011).
pubmed: 20473889
doi: 10.1002/ijc.25399
Anz, D. et al. Suppression of intratumoral CCL22 by type I interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res. 75, 4483–4493 (2015).
pubmed: 26432403
doi: 10.1158/0008-5472.CAN-14-3499
Ghani, K. et al. Efficient human hematopoietic cell transduction using RD114- and GALV-pseudotyped retroviral vectors produced in suspension and serum-free media. Hum. Gene Ther. 20, 966–974 (2009).
pubmed: 19453219
pmcid: 2861952
doi: 10.1089/hum.2009.001
Metzger, P. et al. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. J. Immunother. Cancer 7, 288 (2019).
pubmed: 31694706
pmcid: 6836385
doi: 10.1186/s40425-019-0778-7
Larimer, B. M. et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 77, 2318–2327 (2017).
pubmed: 28461564
pmcid: 5474226
doi: 10.1158/0008-5472.CAN-16-3346
Larimer, B. M. et al. The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by granzyme B pet imaging. Clin. Cancer Res. 25, 1196–1205 (2019).
pubmed: 30327313
doi: 10.1158/1078-0432.CCR-18-2407
Rühland, S. et al. Quantification of in vitro mesenchymal stem cell invasion into tumor spheroids using selective plane illumination microscopy. J. Biomed. Opt. 20, 040501 (2015).
pubmed: 25839427
doi: 10.1117/1.JBO.20.4.040501
Schmohl, K. A. et al. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr. Relat. Cancer 22, 941–952 (2015).
pubmed: 26307023
doi: 10.1530/ERC-15-0245
Renz, B. W. et al. β2 adrenergic–neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 33, 75–90.e7 (2018).
pubmed: 29249692
doi: 10.1016/j.ccell.2017.11.007
Renz, B. W. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8, 1458–1473 (2018).
pubmed: 30185628
pmcid: 6214763
doi: 10.1158/2159-8290.CD-18-0046
Ruess, D. A. et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med. 24, 954–960 (2018).
pubmed: 29808009
doi: 10.1038/s41591-018-0024-8
Reichert, M. et al. Isolation, culture and genetic manipulation of mouse pancreatic ductal cells. Nat. Protoc. 8, 1354–1365 (2013).
pubmed: 23787893
pmcid: 4121532
doi: 10.1038/nprot.2013.079
Halama, N. et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29, 587–601 (2016).
pubmed: 27070705
doi: 10.1016/j.ccell.2016.03.005
Halama, N. et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011).
pubmed: 21846824
doi: 10.1158/0008-5472.CAN-11-0268
Goldman, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).
pubmed: 32444850
pmcid: 7386072
doi: 10.1038/s41587-020-0546-8
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15–15 (2018).
pubmed: 29409532
pmcid: 5802054
doi: 10.1186/s13059-017-1382-0
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).
pubmed: 33208946
pmcid: 7704697
doi: 10.1038/s41586-020-2922-4
Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).
pubmed: 30554520
pmcid: 6580683
doi: 10.1164/rccm.201712-2410OC
Peng, J. et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725–738 (2019).
pubmed: 31273297
pmcid: 6796938
doi: 10.1038/s41422-019-0195-y
Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).
pubmed: 27667365
pmcid: 5228327
doi: 10.1016/j.cels.2016.08.011
Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
pubmed: 27122128
doi: 10.1186/s13059-016-0947-7
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
pubmed: 28091601
pmcid: 5241818
doi: 10.1038/ncomms14049
McInnes L., Healy J. & Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2020).
Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).
pubmed: 33654293
doi: 10.1038/s41591-020-01227-z