Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 06 2021
Historique:
received: 14 11 2020
accepted: 17 05 2021
entrez: 5 6 2021
pubmed: 6 6 2021
medline: 16 11 2021
Statut: epublish

Résumé

Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.

Identifiants

pubmed: 34088930
doi: 10.1038/s41598-021-91127-0
pii: 10.1038/s41598-021-91127-0
pmc: PMC8178332
doi:

Substances chimiques

VEGFA protein, human 0
Vascular Endothelial Growth Factor A 0
vascular endothelial growth factor A, mouse 0
Heparin 9005-49-6

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11827

Subventions

Organisme : NHLBI NIH HHS
ID : T32 HL007734
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD090255
Pays : United States
Organisme : NIH HHS
ID : 5T32HL007734
Pays : United States

Références

Tsao, K., Allison, N. D., Harting, M. T., Lally, P. A. & Lally, K. P. Congenital diaphragmatic hernia in the preterm infant. Surgery. 148(2), 404–410 (2010).
pubmed: 20471048 doi: 10.1016/j.surg.2010.03.018
Seetharamaiah, R., Younger, J. G., Bartlett, R. H. & Hirschl, R. B. Factors associated with survival in infants with congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: A report from the Congenital Diaphragmatic Hernia Study Group. J. Pediatr. Surg. 44(7), 1315–1321 (2009).
pubmed: 19573654 doi: 10.1016/j.jpedsurg.2008.12.021
Chang, R. et al. VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J. Pediatr. Surg. 39(6), 825–828 (2004) (Discussion 8).
pubmed: 15185205 doi: 10.1016/j.jpedsurg.2004.02.015
van der Horst, I. W. et al. Expression of hypoxia-inducible factors, regulators, and target genes in congenital diaphragmatic hernia patients. Pediatr. Dev. Pathol. 14(5), 384–390 (2011).
pubmed: 21671771 doi: 10.2350/09-09-0705-OA.1
Acarregui, M. J., Penisten, S. T., Goss, K. L., Ramirez, K. & Snyder, J. M. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am. J. Respir. Cell Mol. Biol. 20(1), 14–23 (1999).
pubmed: 9870913 doi: 10.1165/ajrcmb.20.1.3251
Aman, J., Bogaard, H. J. & Vonk, N. A. Why vessels do matter in pulmonary disease. Thorax 71(8), 767–769 (2016).
pubmed: 27325753 doi: 10.1136/thoraxjnl-2016-208853
Healy, A. M., Morgenthau, L., Zhu, X., Farber, H. W. & Cardoso, W. V. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev. Dyn. 219(3), 341–352 (2000).
pubmed: 11066091 doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1061>3.0.CO;2-M
Lassus, P., Ristimaki, A., Ylikorkala, O., Viinikka, L. & Andersson, S. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 159(5 Pt 1), 1429–1433 (1999).
pubmed: 10228106 doi: 10.1164/ajrccm.159.5.9806073
Thebaud, B. et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112(16), 2477–2486 (2005).
pubmed: 16230500 doi: 10.1161/CIRCULATIONAHA.105.541524
Compernolle, V. et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 8(7), 702–710 (2002).
pubmed: 12053176 doi: 10.1038/nm721
Hsia, C. C. Signals and mechanisms of compensatory lung growth. J. Appl. Physiol. 97(5), 1992–1998 (2004).
pubmed: 15475557 doi: 10.1152/japplphysiol.00530.2004
Voswinckel, R. et al. Characterisation of post-pneumonectomy lung growth in adult mice. Eur. Respir. J. 24(4), 524–532 (2004).
pubmed: 15459128 doi: 10.1183/09031936.04.10004904
Sakurai, M. K. et al. Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am. J. Physiol. Lung Cell. Mol. Physiol. 292(3), L742–L747 (2007).
pubmed: 17122356 doi: 10.1152/ajplung.00064.2006
Dao, D. T. et al. Vascular endothelial growth factor accelerates compensatory lung growth by increasing the alveolar units. Pediatr. Res. 83(6), 1182–1189 (2018).
pubmed: 29638228 pmcid: 6019135 doi: 10.1038/pr.2018.41
Dao, D. T. et al. Heparin impairs angiogenic signaling and compensatory lung growth after left pneumonectomy. Angiogenesis 21(4), 837–848 (2018).
pubmed: 29956017 pmcid: 6463887 doi: 10.1007/s10456-018-9628-3
Robinson, C. J. & Stringer, S. E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell. Sci. 114(Pt 5), 853–865 (2001).
pubmed: 11181169 doi: 10.1242/jcs.114.5.853
Galambos, C. et al. Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am. J. Respir. Cell. Mol. Biol. 27(2), 194–203 (2002).
pubmed: 12151311 doi: 10.1165/ajrcmb.27.2.4703
Springer, M. L. et al. Localization of vascular response to VEGF is not dependent on heparin binding. FASEB J. 21(9), 2074–2085 (2007).
pubmed: 17325231 doi: 10.1096/fj.06-7700com
Lampropoulou, A. & Ruhrberg, C. Neuropilin regulation of angiogenesis. Biochem. Soc. Trans. 42(6), 1623–1628 (2014).
pubmed: 25399580 doi: 10.1042/BST20140244
Mohamed, A. A. et al. Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J. Cancer. 1, 197–208 (2010).
pubmed: 21060730 pmcid: 2974237 doi: 10.7150/jca.1.197
East, M. A., Landis, D. I., Thompson, M. A. & Annex, B. H. Effect of single dose of intravenous heparin on plasma levels of angiogenic growth factors. Am. J. Cardiol. 91(10), 1234–1236 (2003).
pubmed: 12745108 doi: 10.1016/S0002-9149(03)00271-6
Kapur, N. K. et al. Distinct effects of unfractionated heparin versus bivalirudin on circulating angiogenic peptides. PLoS ONE 7(4), e34344 (2012).
pubmed: 22509290 pmcid: 3324508 doi: 10.1371/journal.pone.0034344
Woik, N. & Kroll, J. Regulation of lung development and regeneration by the vascular system. Cell. Mol. Life Sci. 72(14), 2709–2718 (2015).
pubmed: 25894695 doi: 10.1007/s00018-015-1907-1
Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20(11), 2768–2778 (2001).
pubmed: 11387210 pmcid: 125481 doi: 10.1093/emboj/20.11.2768
Franke, T. F., Kaplan, D. R. & Cantley, L. C. PI3K: Downstream AKTion blocks apoptosis. Cell 88(4), 435–437 (1997).
pubmed: 9038334 doi: 10.1016/S0092-8674(00)81883-8
Ding, B. S. et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147(3), 539–553 (2011).
pubmed: 22036563 pmcid: 3228268 doi: 10.1016/j.cell.2011.10.003
Dao, D. T. et al. Intranasal delivery of VEGF enhances compensatory lung growth in mice. PLoS ONE 13(6), e0198700 (2018).
pubmed: 29879188 pmcid: 5991715 doi: 10.1371/journal.pone.0198700
Herzog, B., Pellet-Many, C., Britton, G., Hartzoulakis, B. & Zachary, I. C. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell. 22(15), 2766–2776 (2011).
pubmed: 21653826 pmcid: 3145551 doi: 10.1091/mbc.e09-12-1061
Parker, M. W., Xu, P., Li, X. & Vander Kooi, C. W. Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J. Biol. Chem. 287(14), 11082–11089 (2012).
pubmed: 22318724 pmcid: 3322888 doi: 10.1074/jbc.M111.331140
Sarabipour, S. & Mac, G. F. VEGF-A121a binding to Neuropilins: A concept revisited. Cell. Adher. Migr. 12(3), 204–214 (2018).
doi: 10.1080/19336918.2017.1372878
Teran, M. & Nugent, M. A. Synergistic binding of vascular endothelial growth factor-A and its receptors to heparin selectively modulates complex affinity. J. Biol. Chem. 290(26), 16451–16462 (2015).
pubmed: 25979342 pmcid: 4481241 doi: 10.1074/jbc.M114.627372
Wynn, J., Yu, L. & Chung, W. K. Genetic causes of congenital diaphragmatic hernia. Semin. Fetal Neonatal. Med. 19(6), 324–330 (2014).
pubmed: 25447988 pmcid: 4259843 doi: 10.1016/j.siny.2014.09.003
Sakurai, M. K., Greene, A. K., Wilson, J., Fauza, D. & Puder, M. Pneumonectomy in the mouse: Technique and perioperative management. J. Invest. Surg. 18(4), 201–205 (2005).
pubmed: 16126631 doi: 10.1080/08941930591004485
O’Reilly, M. S. et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2), 277–285 (1997).
pubmed: 9008168 doi: 10.1016/S0092-8674(00)81848-6
Rennel, E. S. et al. Recombinant human VEGF165b protein is an effective anti-cancer agent in mice. Eur. J. Cancer. 44(13), 1883–1894 (2008).
pubmed: 18657413 pmcid: 2565644 doi: 10.1016/j.ejca.2008.05.027
Hua, J. et al. Recombinant human VEGF165b inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 51(8), 4282–4288 (2010).
pubmed: 20237252 pmcid: 2910649 doi: 10.1167/iovs.09-4360
Waldner, M. J. et al. VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J. Exp. Med. 207(13), 2855–2868 (2010).
pubmed: 21098094 pmcid: 3005238 doi: 10.1084/jem.20100438
Ludin, A. et al. Injection of vascular endothelial growth factor into knee joints induces osteoarthritis in mice. Osteoarthr. Cartil. 21(3), 491–497 (2013).
doi: 10.1016/j.joca.2012.12.003
Verheyen, A. et al. Therapeutic potential of VEGF and VEGF-derived peptide in peripheral neuropathies. Neuroscience 244, 77–89 (2013).
pubmed: 23583762 doi: 10.1016/j.neuroscience.2013.03.050
Liu, Y. et al. Reversible retinal vessel closure from VEGF-induced leukocyte plugging. JCI Insight. 2, 18 (2017).
doi: 10.1172/jci.insight.95530
Roberts, W. G. & Palade, G. E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell. Sci. 108(Pt 6), 2369–2379 (1995).
pubmed: 7673356 doi: 10.1242/jcs.108.6.2369
McCloskey, D. P., Hintz, T. M. & Scharfman, H. E. Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Res. Bull. 76(1–2), 36–44 (2008).
pubmed: 18395608 doi: 10.1016/j.brainresbull.2007.11.018
Zhang, S. X., Wang, J. J., Gao, G., Parke, K. & Ma, J. X. Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J. Mol. Endocrinol. 37(1), 1–12 (2006).
pubmed: 16901919 doi: 10.1677/jme.1.02008
Ko, V. H. et al. Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model. Angiogenesis 23(4), 637–649 (2020).
pubmed: 32666268 doi: 10.1007/s10456-020-09735-9
Scherle, W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26(1), 57–60 (1970).
pubmed: 5530651
Ochs, M. & Muhlfeld, C. Quantitative microscopy of the lung: A problem-based approach. Part 1: Basic principles of lung stereology. Am. J. Physiol. Lung. Cell. Mol. Physiol. 305(1), 15–22 (2013).
doi: 10.1152/ajplung.00429.2012
Muhlfeld, C. & Ochs, M. Quantitative microscopy of the lung: A problem-based approach. Part 2: Stereological parameters and study designs in various diseases of the respiratory tract. Am. J. Physiol. Lung. Cell. Mol. Physiol. 305(3), 205–221 (2013).
doi: 10.1152/ajplung.00427.2012
Quade, D. Rank analysis of covariance. JASA. 62(320), 1187–1200 (1967).
doi: 10.1080/01621459.1967.10500925

Auteurs

Lumeng J Yu (LJ)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Victoria H Ko (VH)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Duy T Dao (DT)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Jordan D Secor (JD)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Amy Pan (A)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Bennet S Cho (BS)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Paul D Mitchell (PD)

Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA.

Hiroko Kishikawa (H)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.

Diane R Bielenberg (DR)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.

Mark Puder (M)

Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. mark.puder@childrens.harvard.edu.
Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA. mark.puder@childrens.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH