The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models.


Journal

Virus research
ISSN: 1872-7492
Titre abrégé: Virus Res
Pays: Netherlands
ID NLM: 8410979

Informations de publication

Date de publication:
09 2021
Historique:
received: 08 03 2021
revised: 27 05 2021
accepted: 28 05 2021
pubmed: 7 6 2021
medline: 10 8 2021
entrez: 6 6 2021
Statut: ppublish

Résumé

The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.

Identifiants

pubmed: 34090962
pii: S0168-1702(21)00176-3
doi: 10.1016/j.virusres.2021.198469
pmc: PMC8180352
pii:
doi:

Substances chimiques

Antiviral Agents 0
Folic Acid Antagonists 0
RNA, Viral 0
remdesivir 3QKI37EEHE
Adenosine Monophosphate 415SHH325A
Alanine OF5P57N2ZX
Methotrexate YL5FZ2Y5U1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

198469

Informations de copyright

Copyright © 2021 Elsevier B.V. All rights reserved.

Références

JAMA. 2020 Sep 15;324(11):1048-1057
pubmed: 32821939
Virology. 1957 Feb;3(1):15-21
pubmed: 13409757
J Virol Methods. 2006 Jun;134(1-2):183-9
pubmed: 16510196
Nat Commun. 2020 Jul 24;11(1):3718
pubmed: 32709886
Eur J Clin Invest. 2020 Oct;50(10):e13366
pubmed: 32735689
Cancer Cell. 2018 Jul 9;34(1):9-20
pubmed: 29731395
Jpn J Cancer Res. 1990 Jan;81(1):85-90
pubmed: 2108951
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2441-5
pubmed: 2006182
Pharmacol Ther. 2019 Mar;195:111-131
pubmed: 30347213
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5
pubmed: 27079975
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
Mol Cell. 2020 May 21;78(4):779-784.e5
pubmed: 32362314
PLoS One. 2015 Jul 01;10(7):e0130078
pubmed: 26131691
Cancer Res. 2017 Nov 1;77(21):e31-e34
pubmed: 29092934
Int Arch Allergy Immunol. 2020;181(6):467-475
pubmed: 32392562
JAMA. 1994 Oct 19;272(15):1190-5
pubmed: 7523739
Mol Pharmacol. 1969 Jul;5(4):318-32
pubmed: 4896040
Lancet. 2020 Feb 15;395(10223):e30-e31
pubmed: 32032529
Nat Rev Rheumatol. 2010 Mar;6(3):175-8
pubmed: 20197777
Biochem Soc Trans. 2020 Apr 29;48(2):559-567
pubmed: 32239204
J Clin Invest. 1985 Sep;76(3):907-12
pubmed: 2413074
Arthritis Rheumatol. 2014 May;66(5):1101-10
pubmed: 24470106
Lancet. 2020 May 16;395(10236):1569-1578
pubmed: 32423584
Int J Pharm. 2000 Nov 4;208(1-2):1-11
pubmed: 11064206
J Biol Chem. 1985 Aug 15;260(17):9720-6
pubmed: 2410416
Virus Res. 2021 Jan 15;292:198246
pubmed: 33249060
Ann Rheum Dis. 2020 Jul;79(7):988-990
pubmed: 32503857
Biochem J. 1986 May 15;236(1):193-200
pubmed: 2431676
J Med Virol. 2021 Mar;93(3):1780-1785
pubmed: 32926453
J Gen Virol. 2020 Sep;101(9):925-940
pubmed: 32568027
Acta Oncol. 2005;44(4):406-11
pubmed: 16120550
Mol Pharmacol. 2009 Oct;76(4):723-33
pubmed: 19570950
Nat Commun. 2020 Nov 27;11(1):6059
pubmed: 33247099
Microbiol Immunol. 2020 Sep;64(9):635-639
pubmed: 32579258
J Rheumatol. 2008 Sep;35(9):1709-15
pubmed: 18634162
Nat Commun. 2021 Jan 12;12(1):279
pubmed: 33436624
Am J Obstet Gynecol. 1997 Dec;177(6):1444-9
pubmed: 9423749
Proc Soc Exp Biol Med. 1958 Feb;97(2):429-31
pubmed: 13518295
Bioinformatics. 2011 Nov 1;27(21):2987-93
pubmed: 21903627
Pharmacogenomics J. 2015 Jun;15(3):248-54
pubmed: 25348617
J Neurol Sci. 2020 Aug 15;415:116936
pubmed: 32532449
J Biol Chem. 1986 May 15;261(14):6478-85
pubmed: 3700401
Cold Spring Harb Perspect Med. 2016 Aug 01;6(8):
pubmed: 27352799
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Int J Mol Sci. 2019 Oct 10;20(20):
pubmed: 31658782
Cell Cycle. 2014;13(18):2879-88
pubmed: 25486476
J Biol Chem. 1990 May 25;265(15):8470-8
pubmed: 2341391
Nat Commun. 2021 Mar 15;12(1):1676
pubmed: 33723254
Nat Rev Rheumatol. 2020 Mar;16(3):145-154
pubmed: 32066940
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
J Virol. 2013 Sep;87(17):9411-9
pubmed: 23824813
N Engl J Med. 1948 Jun 3;238(23):787-93
pubmed: 18860765
Cell. 2020 Sep 3;182(5):1284-1294.e9
pubmed: 32730807
Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3
pubmed: 19854939
J Neurol Sci. 2020 Aug 15;415:116935
pubmed: 32534807
Front Microbiol. 2021 Feb 12;12:625136
pubmed: 33643253
Viruses. 2019 Apr 10;11(4):
pubmed: 30974762
Proc Soc Exp Biol Med. 1950 Jun;74(2):403-11
pubmed: 15440837
N Engl J Med. 2020 Nov 5;383(19):1813-1826
pubmed: 32445440
Proc Natl Acad Sci U S A. 1985 Aug;82(15):4881-5
pubmed: 3860829
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Clin Transplant. 1996 Feb;10(1 Pt 2):77-84
pubmed: 8680053
Int J Mol Sci. 2020 May 14;21(10):
pubmed: 32423175
Virol J. 2021 Apr 30;18(1):92
pubmed: 33931090
Leukemia. 2020 Jun;34(6):1503-1511
pubmed: 32372026
Nature. 2020 Mar;579(7798):265-269
pubmed: 32015508

Auteurs

Kim M Stegmann (KM)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Antje Dickmanns (A)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Sabrina Gerber (S)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Vella Nikolova (V)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Luisa Klemke (L)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Valentina Manzini (V)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Denise Schlösser (D)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Cathrin Bierwirth (C)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Julia Freund (J)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Maren Sitte (M)

NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany.

Raimond Lugert (R)

Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Gabriela Salinas (G)

NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Germany.

Toni Luise Meister (TL)

Department of Molecular and Medical Virology, Ruhr University Bochum, Germany.

Stephanie Pfaender (S)

Department of Molecular and Medical Virology, Ruhr University Bochum, Germany.

Dirk Görlich (D)

Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

Bernd Wollnik (B)

Institute of Human Genetics, University Medical Center Göttingen, Germany.

Uwe Groß (U)

Institute of Medical Microbiology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany.

Matthias Dobbelstein (M)

Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany. Electronic address: mdobbel@uni-goettingen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH