Recognition of a tandem lesion by DNA bacterial formamidopyrimidine glycosylases explored combining molecular dynamics and machine learning.

DNA repair glycosylase Molecular dynamics simulations MutM Tandem lesion

Journal

Computational and structural biotechnology journal
ISSN: 2001-0370
Titre abrégé: Comput Struct Biotechnol J
Pays: Netherlands
ID NLM: 101585369

Informations de publication

Date de publication:
2021
Historique:
received: 15 01 2021
revised: 19 04 2021
accepted: 20 04 2021
entrez: 7 6 2021
pubmed: 8 6 2021
medline: 8 6 2021
Statut: epublish

Résumé

The combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such a tandem base lesion gives rise to a strong coupling with the double helix degrees of freedom and induces important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesion featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulations and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. Our results reveal substantial changes in the interaction network surrounding the 8-oxoG upon addition of an adjacent abasic site, leading to the perturbation of the intercalation triad which is crucial for lesion recognition and processing. The recognition process might also be impacted by a more constrained MutM-DNA binding upon tandem damage, as shown by the machine learning post-processing. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally local multiple damaged sites of the utmost significance in radiation chemistry.

Identifiants

pubmed: 34093997
doi: 10.1016/j.csbj.2021.04.055
pii: S2001-0370(21)00167-7
pmc: PMC8141532
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2861-2869

Informations de copyright

© 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Nucleic Acids Res. 2017 Feb 28;45(4):2188-2195
pubmed: 27986856
Methods Enzymol. 2018;599:21-68
pubmed: 29746241
J Biol Chem. 2003 Dec 19;278(51):51543-8
pubmed: 14525999
Br J Cancer Suppl. 1987 Jun;8:105-12
pubmed: 2820457
Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1122-6
pubmed: 8430083
Nature. 2007 Jun 21;447(7147):941-50
pubmed: 17581577
Int J Mol Sci. 2018 Mar 23;19(4):
pubmed: 29570697
J Biol Chem. 2002 May 31;277(22):19811-6
pubmed: 11912217
Mutat Res. 2012 Oct-Dec;751(2):158-246
pubmed: 22743550
Environ Mol Mutagen. 2017 Jun;58(5):235-263
pubmed: 28485537
Clin Dermatol. 1985 Jan-Mar;3(1):33-69
pubmed: 3833325
FEBS Lett. 2020 Sep;594(18):3032-3044
pubmed: 32598485
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10044-8
pubmed: 25065673
Radiat Res. 2015 May;183(5):525-40
pubmed: 25909147
Nucleic Acids Res. 2016 Oct 14;44(18):8588-8599
pubmed: 27587587
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37
pubmed: 27322406
Free Radic Biol Med. 2017 Jun;107:2-12
pubmed: 28363603
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Chem Theory Comput. 2010 Sep 14;6(9):2935-2947
pubmed: 20856692
J Comput Chem. 2005 Jun;26(8):788-98
pubmed: 15806602
J Am Chem Soc. 2007 Apr 4;129(13):4089-98
pubmed: 17335214
Biochim Biophys Acta. 2015 Jun;1853(6):1253-71
pubmed: 25655665
EMBO J. 2002 Jun 17;21(12):2854-65
pubmed: 12065399
Biochemistry. 2004 Aug 31;43(34):11017-26
pubmed: 15323560
DNA Repair (Amst). 2004 Mar 4;3(3):289-99
pubmed: 15177044
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
J Am Chem Soc. 2018 Apr 4;140(13):4522-4526
pubmed: 29578340
DNA Repair (Amst). 2020 Sep;93:102906
pubmed: 33087272
DNA Repair (Amst). 2006 Aug 13;5(8):947-58
pubmed: 16857432
Prostate Cancer Prostatic Dis. 2020 Mar;23(1):24-37
pubmed: 31197228
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5528-33
pubmed: 20212167
J Biol Chem. 2010 Jan 8;285(2):1468-78
pubmed: 19889642
Mutat Res. 2012 Apr 1;732(1-2):34-42
pubmed: 22261346
Nucleic Acids Res. 2020 Feb 20;48(3):e18
pubmed: 31840169
Biochemistry. 1990 Jul 31;29(30):7024-32
pubmed: 2223758
Nucleic Acids Res. 1998 Feb 15;26(4):932-41
pubmed: 9461450
Nat Methods. 2016 Jan;13(1):55-8
pubmed: 26569599
Biochim Biophys Acta. 2013 Jan;1834(1):247-71
pubmed: 23076011
Pharmacol Ther. 2016 Apr;160:65-83
pubmed: 26896565
Nucleic Acids Res. 2002 Nov 15;30(22):4926-36
pubmed: 12433996
Nucleic Acids Res. 2009 Sep;37(17):5917-29
pubmed: 19625494
Radiother Oncol. 2013 Sep;108(3):362-9
pubmed: 23849169
J Phys Chem Lett. 2016 Oct 6;7(19):3760-3765
pubmed: 27612215
Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2091-9
pubmed: 24799677
Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):
pubmed: 23378590
Biophys J. 2020 Feb 4;118(3):765-780
pubmed: 31952811
Sci Rep. 2020 Oct 14;10(1):17314
pubmed: 33057206
Mutat Res. 2003 Oct 29;531(1-2):127-39
pubmed: 14637250
Free Radic Biol Med. 2017 Jun;107:125-135
pubmed: 27939934
Cells. 2019 Oct 23;8(11):
pubmed: 31652769
Nucleic Acids Res. 1991 Jul 11;19(13):3629-32
pubmed: 1649454
Acc Chem Res. 2012 Feb 21;45(2):196-205
pubmed: 21830782
Nat Struct Biol. 2002 Jul;9(7):544-52
pubmed: 12055620
Chemistry. 2016 Aug 22;22(35):12358-62
pubmed: 27440482
Nucleic Acids Res. 2016 Nov 16;44(20):9591-9599
pubmed: 27651459
Molecules. 2020 Jul 08;25(14):
pubmed: 32650559
PLoS Comput Biol. 2018 Jun 14;14(6):e1006224
pubmed: 29902181
Biochemistry. 2008 Nov 18;47(46):11909-19
pubmed: 18950195
J Biol Chem. 2012 Oct 26;287(44):36702-10
pubmed: 22989888
Protein Sci. 2004 Aug;13(8):2009-21
pubmed: 15273302
Nature. 2009 Dec 10;462(7274):762-6
pubmed: 20010681
DNA Repair (Amst). 2005 Mar 2;4(3):327-39
pubmed: 15661656
EMBO J. 2000 Aug 1;19(15):3857-69
pubmed: 10921868
Radiat Res. 2013 Jul;180(1):100-9
pubmed: 23682596
Int J Med Sci. 2012;9(3):193-9
pubmed: 22408567
Nucleic Acids Res. 2016 Jan 29;44(2):683-94
pubmed: 26553802
Biochemistry. 2010 Jun 22;49(24):4957-67
pubmed: 20469926

Auteurs

Emmanuelle Bignon (E)

Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France.

Natacha Gillet (N)

Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France.

Chen-Hui Chan (CH)

Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France.

Tao Jiang (T)

Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France.

Antonio Monari (A)

Université de Lorraine and CNRS, LPCT UMR 7019, 54000 Nancy, France.

Elise Dumont (E)

Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France.
Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France.

Classifications MeSH