Synthesis and dissociation of soliton molecules in parallel optical-soliton reactors.
Journal
Light, science & applications
ISSN: 2047-7538
Titre abrégé: Light Sci Appl
Pays: England
ID NLM: 101610753
Informations de publication
Date de publication:
07 Jun 2021
07 Jun 2021
Historique:
received:
25
01
2021
accepted:
20
05
2021
revised:
12
05
2021
entrez:
8
6
2021
pubmed:
9
6
2021
medline:
9
6
2021
Statut:
epublish
Résumé
Mode-locked lasers have been widely used to explore interactions between optical solitons, including bound-soliton states that may be regarded as "photonic molecules". Conventional mode-locked lasers normally, however, host at most only a few solitons, which means that stochastic behaviours involving large numbers of solitons cannot easily be studied under controlled experimental conditions. Here we report the use of an optoacoustically mode-locked fibre laser to create hundreds of temporal traps or "reactors" in parallel, within each of which multiple solitons can be isolated and controlled both globally and individually using all-optical methods. We achieve on-demand synthesis and dissociation of soliton molecules within these reactors, in this way unfolding a novel panorama of diverse dynamics in which the statistics of multi-soliton interactions can be studied. The results are of crucial importance in understanding dynamical soliton interactions and may motivate potential applications for all-optical control of ultrafast light fields in optical resonators.
Identifiants
pubmed: 34099618
doi: 10.1038/s41377-021-00558-x
pii: 10.1038/s41377-021-00558-x
pmc: PMC8184919
doi:
Types de publication
Journal Article
Langues
eng
Pagination
120Références
Nat Commun. 2019 Dec 17;10(1):5756
pubmed: 31848348
Opt Lett. 1989 Nov 15;14(22):1284-6
pubmed: 19759660
Nat Commun. 2015 May 07;6:7004
pubmed: 25947951
Opt Lett. 2020 Mar 1;45(5):1232-1235
pubmed: 32108813
Opt Lett. 1992 Nov 1;17(21):1515
pubmed: 19798232
Nat Commun. 2018 Sep 3;9(1):3565
pubmed: 30177753
Nat Commun. 2019 Feb 19;10(1):830
pubmed: 30783100
Opt Express. 2004 Jul 12;12(14):3184-9
pubmed: 19483840
Opt Lett. 1983 Nov 1;8(11):596-8
pubmed: 19718195
Opt Express. 2019 Sep 16;27(19):26392-26404
pubmed: 31674522
Phys Rev Lett. 2018 Jul 13;121(2):023905
pubmed: 30085749
Science. 2018 May 25;360(6391):900-903
pubmed: 29650700
Science. 2017 Apr 7;356(6333):50-54
pubmed: 28386005
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jan;75(1 Pt 2):016613
pubmed: 17358281
Sci Rep. 2012;2:866
pubmed: 23173078
Phys Rev Lett. 2019 Dec 20;123(25):253902
pubmed: 31922800
Opt Lett. 2018 Apr 1;43(7):1623-1626
pubmed: 29601046
Phys Rev Lett. 2012 Jun 8;108(23):233901
pubmed: 23003957
Opt Lett. 1987 May 1;12(5):355-7
pubmed: 19738889
Phys Rev Lett. 2012 Jun 29;108(26):263906
pubmed: 23004983
Opt Lett. 1995 Oct 1;20(19):1970-2
pubmed: 19862220
Opt Lett. 1994 May 15;19(10):698-700
pubmed: 19844416
Opt Lett. 1991 Feb 15;16(4):214-6
pubmed: 19773886
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 2):016616
pubmed: 16090116
Phys Rev A. 1991 Nov 15;44(10):6954-6957
pubmed: 9905831
Phys Rev Lett. 2017 Jun 16;118(24):243901
pubmed: 28665655
Phys Rev Lett. 2000 Oct 2;85(14):2937-40
pubmed: 11005972
Phys Rev Lett. 2005 May 27;94(20):203903
pubmed: 16090249
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):045601
pubmed: 17500954
Nature. 2016 Sep 1;537(7618):84-88
pubmed: 27409814
Nat Commun. 2020 May 14;11(1):2402
pubmed: 32409631