Novel AVPR2 mutations and clinical characteristics in 28 Chinese families with congenital nephrogenic diabetes insipidus.


Journal

Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594

Informations de publication

Date de publication:
Dec 2021
Historique:
received: 21 04 2021
accepted: 02 06 2021
pubmed: 9 6 2021
medline: 19 2 2022
entrez: 8 6 2021
Statut: ppublish

Résumé

To investigate genotype and phenotype of congenital nephrogenic diabetes insipidus caused by AVPR2 mutations, which is rare and limitedly studied in Chinese population. 88 subjects from 28 families with NDI in a department (Beijing, PUMCH) were screened for AVPR2 mutations. Medical records were retrospectively reviewed and characterized. Genotype and phenotype analysis was performed. 23 AVPR2 mutations were identified, including six novel mutations (p.Y117D, p.W208R, p.L313R, p.S127del, p.V162Sfs*30 and p.G251Pfs*96). The onset-age ranged from 1 week to 3 years. Common presentations were polydipsia and polyuria (100%) and intermittent fever (57%). 21% and 14% of patients had short stature and mental impairment. Urine SG and osmolality were decreased, while serum osmolality and sodium were high. Urological ultrasonography results showed hydronephrosis of the kidney (52%), dilation of the ureter (48%), and thickened bladder wall or increased residual urine (32%), led to intermittent urethral catheterization (7%), cystostomy (11%) and binary nephrostomy (4%). Urological defects were developed in older patients. Genotype and phenotype analysis revealed patients with non-missense mutations had higher levels of serum sodium than missense mutations. In the first and largest case series of NDI caused by AVPR2 mutations in Chinese population, we established genetic profile and characterized clinical data, reporting six novel mutations. Further, we found genotype was associated with phenotype. This knowledge broadens genotype and phenotype spectrum of rare congenital NDI caused by AVPR2 mutations, and provides basis for studying molecular biology of AVPR2.

Identifiants

pubmed: 34101133
doi: 10.1007/s40618-021-01607-3
pii: 10.1007/s40618-021-01607-3
doi:

Substances chimiques

AVPR2 protein, human 0
Receptors, Vasopressin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2777-2783

Subventions

Organisme : National Natural Science Fund
ID : 81670814
Organisme : National Natural Science Fund
ID : 81970757
Organisme : National Key R&D Program of China
ID : 2018YFA 0800801

Informations de copyright

© 2021. Italian Society of Endocrinology (SIE).

Références

Bockenhauer D, Bichet DG (2015) Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 11(10):576–588
doi: 10.1038/nrneph.2015.89
Lolait SJOCA, McBride OW, Konig M, Morel A, Brownstein MJ (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339
doi: 10.1038/357336a0
Jung HJKT (2016) Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol 311(6):F1318–F1328
doi: 10.1152/ajprenal.00485.2016
Sasaki SCM, Kikuchi E, Rai T, Uchida S (2013) Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2. Clin Exp Nephrol 17:338–344
doi: 10.1007/s10157-012-0726-z
Bichet DGHG, Lonergan M et al (1992) X-linked nephrogenic diabetes insipidus: from the ship Hopewell to RFLP studies. Am J Hum Genet 51:1089–1102
pubmed: 1357965 pmcid: 1682824
Wesche DDP, Knoers NV (2012) Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol 27:2183–2204
doi: 10.1007/s00467-012-2118-8
Hillman DA, Neyzi O, Porter P, Cushman A, Talbot NB (1958) Renal (vasopressin-resistant) diabetes insipidus; definition of the effects of a homeostatic limitation in capacity to conserve water on the physical, intellectual and emotional development of a child. Pediatrics 21:430–435
pubmed: 13542087
Vest M, Talbot NB, Crawford JD (1963) Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am J Dis Child 105:175–181
pubmed: 13996962
Uribarri JKM (1993) Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron 653(3):346–389
doi: 10.1159/000187510
Yoo THRD, Song YS, Lee SC, Kim HJ, Kim JS, Choi HY, Kang SW (2006) Congenital nephrogenic diabetes insipidus presented with bilateral hydronephrosis: genetic analysis of V2R gene mutations. Yonsei Med 47:126–130
doi: 10.3349/ymj.2006.47.1.126
Serena Milano MC, Gerbino A, Svelto M, Procino G (2017) Hereditary nephrogenic diabetes insipidus: pathophysiology and possible treatment. An update. Int J Mol Sci 18(2835):1–26
Birnbaumer MSA, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335
doi: 10.1038/357333a0
Feldman BJRS, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, Lustig RH, Mathias RS, Portale AA, Miller WL, Gitelman SE (2005) Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med 352:1884–1890
doi: 10.1056/NEJMoa042743
June Yun TS, Wess J et al (2000) Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gen. J Clin Invest 106(11):1361–1371
doi: 10.1172/JCI9154
Robben JHKN, Deen PM (2005) Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. Am J Physiol Renal Physiol 289:F265–F272
doi: 10.1152/ajprenal.00404.2004
Fujiwara TMBD (2005) Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol 16:2836–2846
doi: 10.1681/ASN.2005040371
Spanakis E, Edrice M, Gragnoli C (2008) AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance. J Cell Physiol 217(3):605–617
doi: 10.1002/jcp.21552
Hui Li C-YJX-NZ, Zhang Y-Q (2009) Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 47(7):487–492
pubmed: 19951507
Jing Cen MN, Duan L, Feng Gu (2015) Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees. Int J Clin Exp Med 8(3):3629–3639
pubmed: 26064258 pmcid: 4443092
Adzhubei IASS, Peshkin L, Ramensky VE, Gerasimova A, Bork P (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249
doi: 10.1038/nmeth0410-248
Kumar PHS, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081
doi: 10.1038/nprot.2009.86
Arthus MFLM, Crumley MJ (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054
doi: 10.1681/ASN.V1161044
Vassos Neocleous NS, Shammas C, Efstathiou E, Mastroyiannopoulos NP, Phylactou LA (2012) Identification and characterization of a novel X-linked AVPR2 mutation causing partial nephrogenic diabetes insipidus: a case report and review of the literature. Metab Clin Exp 61:922–930
doi: 10.1016/j.metabol.2012.01.005
Sadeghi HRG, Bichet DG (1997) Biochemical basis of partial nephrogenic diabetes insipidus phenotypes. Mol Endocrinol 11:1806–1813
doi: 10.1210/mend.11.12.0017
Detlef Bockenhauer EC, Rochdi D, Vant Hoff W, Breton B, Bernier V, Bouvier M, Bichet DG (2010) Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol 114(1):1–10
doi: 10.1159/000245059
Inaba SHH, Taniguchi N (2001) The property of a novel v2 receptor mutant in a patient with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 86:381–385
doi: 10.1210/jcem.86.1.7165
Wildin RS, Cogdell DE, Valadez V (1998) AVPR2 variants and V2 vasopressin receptor function in nephrogenic diabetes insipidus. Hormones-Cytokines-Signal 54(6):1909–1922
Sangkuhl K, Römpler H, Busch W, Karges B, Schöneberg T (2005) Nephrogenic diabetes insipidus caused by mutation of Tyr205: a key residue of V2 vasopressin receptor function. Hum Mutat 25(5):505
doi: 10.1002/humu.9337
Schulz AGR, Schultz G, Gudermann T, Schoneberg T (2000) Structural implication for receptor oligomerization from functional reconstitution studies of mutant V2 vasopressin receptors. J Biol Chem 275:2381–2389
doi: 10.1074/jbc.275.4.2381
Ala Y, Morin D, Mouillac B, Sabatier N, Vargas R, Cotte N, Déchaux M, Antignac C, Arthus MF, Lonergan M, Turner MS, Balestre MN, Alonso G, Hibert M, Barberis C, Hendy GN, Bichet DG, Jard S (1998) Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: Molecular basis of a mild clinical phenotype. J Am Soc Nephrol 9(10):1861–1872
doi: 10.1681/ASN.V9101861
Robben JH, Sze M, Knoers NVAM, Deen PMT (2007) Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 292(1):F253–F260
doi: 10.1152/ajprenal.00247.2006
Torsten Schöneberg VS, Wess J, Gudermann T, Schultz G (1997) Reconstitution of Mutant V2 vasopressin receptors by adenovirus-mediated Gene transfer. Mol Basis Clin Implic 100(6):1547–1556
Pasel K, Schulz A, Timmermann K, Linnemann K, Hoeltzenbein M, Jääskeläinen J, Grüters A, Filler G, Schöneberg T (2000) Characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J Clin Endocrinol Metab 85(4):1703–1710
pubmed: 10770218
Morello JP, Salahpour A, Petäjä-Repo UE, Laperrière A, Lonergan M, Arthus MF, Nabi IR, Bichet DG, Bouvier M (2001) Association of calnexin with wild type and mutant AVPR2 that causes nephrogenic diabetes insipidus. Biochemistry 40(23):6766–6775
doi: 10.1021/bi002699r
Kamperis KSC, Herlin T, Nathan E, Hertz JM, Rittig S (2000) A novel splicing mutation in the V2 vasopressin receptor. Pediatr Nephrol 15:43–49
doi: 10.1007/s004670000431
Wildin RSAM, Bennett RL, Schoof JM, Scott CR (1994) Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus. Am J Hum Genet 55:266–277
pubmed: 7913579 pmcid: 1918356
Ding C, Beetz R, Rittner G, Bartsch O (2020) A female with X-linked Nephrogenic diabetes insipidus in a family with inherited central diabetes Insipidus: case report and review of the literature. Am J Med Genet 182A:1032–1040
doi: 10.1002/ajmg.a.61516
Haruo Mizuno HT et al (2004) Clinical characteristics of eight patients with congenital nephrogenic diabetes insipidus. Endocrine 24(1):55–59
doi: 10.1385/ENDO:24:1:055
Arthus MFFT et al (2000) Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 11:1044–1054
doi: 10.1681/ASN.V1161044
Moeller HB, Rittig S, Fenton RA (2013) Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 34(2):278–301
doi: 10.1210/er.2012-1044

Auteurs

Q Li (Q)

Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.

D Tian (D)

Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, People's Republic of China.

J Cen (J)

Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.

L Duan (L)

Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China. duanlianpumc@163.com.

W Xia (W)

Department of Endocrinology, Key Laboratory of Endocrinology, NHC, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China. xiaweibo8301@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH