Convergence of Machine Vision and Melt Electrowriting.
3D printing
digitization
electrohydrodynamic
melt electrospinning writing
polycaprolactone
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Jul 2021
Jul 2021
Historique:
revised:
16
04
2021
pubmed:
9
6
2021
medline:
9
6
2021
entrez:
8
6
2021
Statut:
ppublish
Résumé
Melt electrowriting (MEW) is a high-resolution additive manufacturing technology that balances multiple parametric variables to arrive at a stable fabrication process. The better understanding of this balance is underscored here using high-resolution camera vision of jet stability profiles in different electrical fields. Complementing this visual information are fiber-diameter measurements obtained at precise points, allowing the correlation to electrified jet properties. Two process signatures-the jet angle and for the first time, the Taylor cone area-are monitored and analyzed with a machine vision system, while SEM imaging for diameter measurement correlates real-time information. This information, in turn, allows the detection and correction of fiber pulsing for accurate jet placement on the collector, and the in-process assessment of the fiber diameter. Improved process control is used to successfully fabricate collapsible MEW tubes; structures that require exceptional accuracy and printing stability. Using a precise winding angle of 60° and 300 layers, the resulting 12 mm-thick tubular structures have elastic snap-through instabilities associated with mechanical metamaterials. This study provides a detailed analysis of the fiber pulsing occurrence in MEW and highlights the importance of real-time monitoring of the Taylor cone volume to better understand, control, and predict printing instabilities.
Identifiants
pubmed: 34101929
doi: 10.1002/adma.202100519
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2100519Subventions
Organisme : German Research Foundation
ID : 322483321
Organisme : Australian Research Council Industrial Transformation Training Centre
ID : IC160100026
Organisme : European Education and Culture Executive Agency
ID : 2013/3137 001-001
Informations de copyright
© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Références
T. M. Robinson, D. W. Hutmacher, P. D. Dalton, Adv. Funct. Mater. 2019, 29, 1904664.
Á. G. Marín, D. Lohse, Ph ys. Fluids 2010, 22, 122104.
E. George, P. Liacouras, F. J. Rybicki, D. Mitsouras, RadioGraphics 2017, 37, 1424.
P. Sitthi-Amorn, J. E. Ramos, Y. Wang, K. Joyce, J. Lan, W. Wang, W. Matusik, ACM Trans. Graphics 2015, 34, 11.
M. Aminzadeh, T. Kurfess, in, Vision-Based Inspection System for Dimensional Accuracy in Powder-Bed Additive Manufacturing, ASME, New York 2016.
W. P. Syam, R. Leach, K. Rybalcenko, A. Gaio, J. Crabtree, Proc. CIRP 2018, 75, 108.
K. Okarma, J. Fastowicz, in Computer Vision Methods for Non-destructive Quality Assessment in Additive Manufacturing, Springer, Cham, Switzerland 2020, pp. 11-20.
B. M. Colosimo, M. Grasso, J. Qual. Technol. 2018, 50, 391.
W. Cui, Y. Zhang, X. Zhang, L. Li, F. Liou, Appl. Sci. 2020, 10, 545.
F. M. Wunner, P. Mieszczanek, O. Bas, S. Eggert, J. Maartens, P. D. Dalton, E. M. De-Juan-Pardo, D. W. Hutmacher, Biofabrication 2019, 11, 025004.
A. Hrynevich, B. S. Elci, J. N. Haigh, R. McMaster, A. Youssef, C. Blum, T. Blunk, G. Hochleitner, J. Groll, P. D. Dalton, Small 2018, 14, 1800232.
G. Hochleitner, A. Youssef, A. Hrynevich, J. N. Haigh, T. Jungst, J. Groll, P. D. Dalton, BioNanomaterials 2016, 17, 159.
F. Chen, G. Hochleitner, T. Woodfield, J. Groll, P. D. Dalton, B. G. Amsden, Biomacromolecules 2016, 17, 208.
D. Nahm, F. Weigl, N. Schafer, A. Sancho, A. Frank, J. Groll, C. Villmann, H. W. Schmidt, P. D. Dalton, R. Luxenhofer, Mater. Horiz. 2020, 7, 928.
F. Tourlomousis, C. Jia, T. Karydis, A. Mershin, H. Wang, D. M. Kalyon, R. C. Chang, Microsyst. Nanoeng. 2019, 5, 15.
K. F. Eichholz, D. A. Hoey, Acta Biomater. 2018, 75, 140.
N. T. Nguyen, J. H. Kim, Y. H. Jeong, Mater. Sci. Eng., C 2019, 103, 109785.
F. M. Wunner, M. L. Wille, T. G. Noonan, O. Bas, P. D. Dalton, E. M. De-Juan-Pardo, D. W. Hutmacher, Adv. Mater. 2018, 30, 1706570.
H. Ding, K. Cao, F. Zhang, W. Boettcher, R. C. Chang, Mater. Des. 2019, 178, 107857.
T. D. Brown, A. Slotosch, L. Thibaudeau, A. Taubenberger, D. Loessner, C. Vaquette, P. D. Dalton, D. W. Hutmacher, Biointerphases 2012, 7, 13.
A. M. van Genderen, K. Jansen, M. Kristen, J. van Duijn, Y. Li, C. C. L. Schuurmans, J. Malda, T. Vermonden, J. Jansen, R. Masereeuw, M. Castilho, Front. Bioeng. Biotechnol. 2020, 8, 2296.
E. McColl, J. Groll, T. Jungst, P. D. Dalton, Mater. Des. 2018, 155, 46.
T. Jungst, M. L. Muerza-Cascante, T. D. Brown, M. Standfest, D. W. Hutmacher, J. Groll, P. D. Dalton, Polym. Int. 2015, 64, 1086.
T. Jungst, I. Pennings, M. Schmitz, A. J. W. P. Rosenberg, J. Groll, D. Gawlitta, Adv. Funct. Mater. 2019, 29, 1905987.
M. Gomez, D. E. Moulton, D. Vella, Nat. Phys. 2017, 13, 142.
X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Prog. Mater. Sci. 2018, 94, 114.
H. Lee, Y. Jang, J. K. Choe, S. Lee, H. Song, J. P. Lee, N. Lone, J. Kim, Sci. Rob. 2020, 5, eaay9024.