Lactation alters fluid flow and solute transport in maternal skeleton: A multiscale modeling study on the effects of microstructural changes and loading frequency.

Bone fluid flow Lactation Lacunar-canalicular system (LCS) Mechanosensing Osteocyte Pericellular matrix (PCM)

Journal

Bone
ISSN: 1873-2763
Titre abrégé: Bone
Pays: United States
ID NLM: 8504048

Informations de publication

Date de publication:
10 2021
Historique:
received: 15 01 2021
revised: 23 04 2021
accepted: 01 06 2021
pubmed: 9 6 2021
medline: 10 7 2021
entrez: 8 6 2021
Statut: ppublish

Résumé

The female skeleton undergoes significant material and ultrastructural changes to meet high calcium demands during reproduction and lactation. Through the peri-lacunar/canalicular remodeling (PLR), osteocytes actively resorb surrounding matrix and enlarge their lacunae and canaliculi during lactation, which are quickly reversed after weaning. How these changes alter the physicochemical environment of osteocytes, the most abundant and primary mechanosensing cells in bone, are not well understood. In this study, we developed a multiscale poroelastic modeling technique to investigate lactation-induced changes in stress, fluid pressurization, fluid flow, and solute transport across multiple length scales (whole bone, porous midshaft cortex, lacunar-canalicular pore system (LCS), and pericellular matrix (PCM) around osteocytes) in murine tibiae subjected to axial compression at 3 N peak load (~320 με) at 0.5, 2, or 4 Hz. Based on previously reported skeletal anatomical measurements from lactating and nulliparous mice, our models demonstrated that loading frequency, LCS porosity, and PCM density were major determinants of fluid and solute flows responsible for osteocyte mechanosensing, cell-cell signaling, and metabolism. When loaded at 0.5 Hz, lactation-induced LCS expansion and potential PCM reduction promoted solute transport and osteocyte mechanosensing via primary cilia, but suppressed mechanosensing via fluid shear and/or drag force on the cell membrane. Interestingly, loading at 2 or 4 Hz was found to overcome the mechanosensing deficits observed at 0.5 Hz and these counter effects became more pronounced at 4 Hz and with sparser PCM in the lactating bone. Synergistically, higher loading frequency (2, 4 Hz) and sparser PCM enhanced flow-mediated mechanosensing and diffusion/convection of nutrients and signaling molecules for osteocytes. In summary, lactation-induced structural changes alter the local environment of osteocytes in ways that favor metabolism, mechanosensing, and post-weaning recovery of maternal bone. Thus, osteocytes play a role in balancing the metabolic and mechanical functions of female skeleton during reproduction and lactation.

Identifiants

pubmed: 34102350
pii: S8756-3282(21)00195-2
doi: 10.1016/j.bone.2021.116033
pmc: PMC8276854
mid: NIHMS1716076
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

116033

Subventions

Organisme : NIAMS NIH HHS
ID : F32 AR076906
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR054385
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR071718
Pays : United States

Informations de copyright

Copyright © 2021 Elsevier Inc. All rights reserved.

Références

J Bone Miner Res. 2017 Apr;32(4):681-687
pubmed: 27736021
Osteoporos Int. 2015 Mar;26(3):1147-54
pubmed: 25510581
J Biomech. 2001 Nov;34(11):1375-86
pubmed: 11672712
Am J Anat. 1951 Nov;89(3):347-79
pubmed: 14894444
Bone Res. 2016 Sep 27;4:16032
pubmed: 27722020
J Bone Miner Res. 2012 Sep;27(9):1936-50
pubmed: 22549931
Bone Res. 2015;3:
pubmed: 26213632
J Clin Invest. 2019 May 21;129(8):3058-3071
pubmed: 31112135
J Bone Miner Res. 2011 Mar;26(3):618-29
pubmed: 20814969
Bone. 2009 Nov;45(5):1017-23
pubmed: 19647808
J Bone Miner Metab. 2004;22(6):524-9
pubmed: 15490261
Ann Biomed Eng. 2007 Oct;35(10):1687-98
pubmed: 17616819
FASEB J. 1999;13 Suppl:S101-12
pubmed: 10352151
Calcif Tissue Int. 2014 Jan;94(1):5-24
pubmed: 24042263
Bonekey Rep. 2012 Dec 05;1:229
pubmed: 24363929
J Bone Miner Res. 2014 Apr;29(4):878-91
pubmed: 24115222
J Biol Chem. 1994 May 6;269(18):13353-60
pubmed: 7909808
J Biomech. 1994 Mar;27(3):339-60
pubmed: 8051194
Biol Reprod. 2001 Sep;65(3):689-95
pubmed: 11514329
Curr Osteoporos Rep. 2018 Feb;16(1):32-41
pubmed: 29349685
J Biomech. 1995 Nov;28(11):1281-97
pubmed: 8522542
J Bone Miner Res. 2017 Apr;32(4):688-697
pubmed: 27859586
Microvasc Res. 1980 Jul;20(1):96-9
pubmed: 7412590
J Bone Miner Res. 2011 Feb;26(2):277-85
pubmed: 20715178
Bone. 2005 Jun;36(6):1030-8
pubmed: 15878316
J Biomech. 2003 Oct;36(10):1409-24
pubmed: 14499290
J Bone Miner Res. 2017 Aug;32(8):1761-1772
pubmed: 28470757
Osteoporos Int. 2012 Jul;23(7):1939-45
pubmed: 21927916
Biotechnol Bioeng. 1990 Feb 20;35(4):327-38
pubmed: 18592527
Physiol Rev. 2016 Apr;96(2):449-547
pubmed: 26887676
Calcif Tissue Res. 1977 May 31;23(1):95-102
pubmed: 890546
J Nutr. 1995 Jul;125(7 Suppl):2020S-2023S
pubmed: 7602386
Bone. 2021 Oct;151:116031
pubmed: 34098162
Ann Biomed Eng. 2008 Dec;36(12):1961-77
pubmed: 18810639
Adv Exp Med Biol. 1978;103:437-50
pubmed: 717118
Curr Osteoporos Rep. 2019 Aug;17(4):157-168
pubmed: 31227998
Bone. 2020 Feb;131:115078
pubmed: 31715337
Bone. 2013 Jun;54(2):230-6
pubmed: 23352996
J Bone Miner Res. 2011 Feb;26(2):229-38
pubmed: 21254230
Rev Can Biol. 1968 Mar;27(1):37-44
pubmed: 5704682
J Musculoskelet Neuronal Interact. 2018 Sep 1;18(3):292-303
pubmed: 30179206
Curr Osteoporos Rep. 2019 Dec;17(6):375-386
pubmed: 31755029
Curr Osteoporos Rep. 2012 Jun;10(2):118-25
pubmed: 22552701
J Bone Miner Res. 2013 May;28(5):1075-86
pubmed: 23109140
J Orthop Res. 2018 Feb;36(2):682-691
pubmed: 28888055
FASEB J. 2014 Apr;28(4):1582-92
pubmed: 24347610
J Bone Miner Res. 2012 Apr;27(4):865-75
pubmed: 22189918
Calcif Tissue Res. 1969 Aug 11;4(1):1-12
pubmed: 4310125
Bone. 2015 Dec;81:152-160
pubmed: 26183251
J Bone Miner Res. 2012 May;27(5):1018-29
pubmed: 22308018
Clin Orthop Relat Res. 1977;(127):236-47
pubmed: 912987
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11911-6
pubmed: 16087872
Matrix Biol. 2016 Mar;50:27-38
pubmed: 26546708
Bone. 2011 Apr 1;48(4):755-9
pubmed: 21130909
J Bone Miner Res. 2017 May;32(5):1014-1026
pubmed: 28109138
Proc Natl Acad Sci U S A. 2019 May 7;116(19):9370-9379
pubmed: 31004057
Virchows Arch A Pathol Anat Histol. 1977 Apr 6;373(3):213-31
pubmed: 140505
Biomech Model Mechanobiol. 2012 Sep;11(7):933-46
pubmed: 22198036
Bone. 2011 Sep;49(3):439-46
pubmed: 21642027
J Bone Miner Res. 2018 Jan;33(1):16-26
pubmed: 28686309
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13648-53
pubmed: 20643964
J Bone Miner Res. 2018 Dec;33(12):2165-2176
pubmed: 30040148
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13325-30
pubmed: 17673554
J Biomech. 2018 Jan 3;66:127-136
pubmed: 29217091
Annu Rev Fluid Mech. 2009 Jan 1;41:347-374
pubmed: 20072666

Auteurs

Xiaohan Lai (X)

Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China. Electronic address: laixhan@ustc.edu.cn.

Rebecca Chung (R)

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Yihan Li (Y)

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Xiaowei Sherry Liu (XS)

McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Liyun Wang (L)

Department of Mechanical Engineering, University of Delaware, United States. Electronic address: lywang@udel.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH