Interleukin-20 Acts as a Promotor of Osteoclastogenesis and Orthodontic Tooth Movement.


Journal

Stem cells international
ISSN: 1687-966X
Titre abrégé: Stem Cells Int
Pays: United States
ID NLM: 101535822

Informations de publication

Date de publication:
2021
Historique:
received: 23 02 2021
revised: 16 04 2021
accepted: 10 05 2021
entrez: 14 6 2021
pubmed: 15 6 2021
medline: 15 6 2021
Statut: epublish

Résumé

Bones constitute organs that are engaged in constant self-remodelling. Osteoblast and osteoclast homeostasis during remodelling contribute to overall skeletal status. Orthodontics is a clinical discipline that involves the investigation and implementation of moving teeth through the bone. The application of mechanical force to the teeth causes an imbalance between osteogenesis and osteogenesis in alveolar bone, leading to tooth movement. Osteoimmunology comprises the crosstalk between the immune and skeletal systems that regulate osteoclast-osteoblast homeostasis. Interleukin- (IL-) 20, an IL-10 family member, is regarded as a proinflammatory factor for autoimmune diseases and has been implicated in bone loss disease. However, the mechanism by which IL-20 regulates osteoclast differentiation and osteoclastogenesis activation remains unclear. This study investigated the effects of IL-20 on osteoclast differentiation in a rat model; it explored the underlying molecular mechanism in vitro and the specific effects on orthodontic tooth movement in vivo. For in vitro analyses, primary rat bone marrow-derived macrophages (BMMs) were prepared from Sprague-Dawley rats for osteoclast induction. After BMMs had been treated with combinations of recombinant IL-20 protein, siRNA, and plasmids, the expression levels of osteoclast-specific factors and signalling pathway proteins were detected through real-time polymerase chain reaction, western blotting, and immunofluorescence staining. For in vivo analyses, IL-20 was injected into the rat intraperitoneal cavity after the establishment of a rat orthodontic tooth movement (OTM) model. OTM distance was detected by Micro-CT and HE staining; the expression levels of protein were detected through immunofluorescence staining. In vitro analyses showed that a low concentration of IL-20 promoted preosteoclast proliferation and osteoclastogenesis. However, a high concentration of IL-20 inhibited BMM proliferation and osteoclastogenesis. IL-20 knockdown decreased the expression of osteoclast specific-markers, while IL-20 overexpression increased the expression of osteoclast specific-markers. Furthermore, IL-20 regulated osteoclast differentiation through the OPG/RANKL/RANK pathway. Overexpression of IL-20 could significantly upregulate RANKL-mediated osteoclast differentiation and osteoclast specific-marker expression; moreover, RANKL/NF- IL-20 augments osteoclastogenesis and osteoclast-mediated bone erosion through the RANKL/NF-

Identifiants

pubmed: 34122555
doi: 10.1155/2021/5539962
pmc: PMC8172288
doi:

Types de publication

Journal Article

Langues

eng

Pagination

5539962

Informations de copyright

Copyright © 2021 Yuanbo Liu et al.

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Orthod Craniofac Res. 2012 Feb;15(1):1-9
pubmed: 22264322
Biomaterials. 2015 May;49:103-12
pubmed: 25725559
Biores Open Access. 2014 Feb 1;3(1):29-34
pubmed: 24570843
Int J Mol Sci. 2019 Nov 02;20(21):
pubmed: 31684035
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3597-602
pubmed: 9520411
Nature. 2018 Sep;561(7722):195-200
pubmed: 30185903
Sci Rep. 2016 Apr 14;6:24339
pubmed: 27075747
Nat Rev Immunol. 2019 Oct;19(10):626-642
pubmed: 31186549
J Exp Med. 1976 Mar 1;143(3):631-47
pubmed: 1082493
J Cell Sci. 2011 Apr 1;124(Pt 7):991-8
pubmed: 21402872
Bone. 1999 Nov;25(5):517-23
pubmed: 10574571
Nature. 1999 Jan 28;397(6717):315-23
pubmed: 9950424
Cytokine Growth Factor Rev. 2010 Oct;21(5):353-63
pubmed: 20864382
Cell. 1997 Apr 18;89(2):309-19
pubmed: 9108485
J Exp Med. 2011 Aug 29;208(9):1849-61
pubmed: 21844205
Arthritis Rheumatol. 2014 Jan;66(1):121-9
pubmed: 24431283
J Leukoc Biol. 2018 Nov;104(5):953-959
pubmed: 30260500
Rheumatology (Oxford). 2017 Mar 1;56(3):488-493
pubmed: 27940584
J Vis Exp. 2018 Jan 6;(131):
pubmed: 29364278
Bone. 2019 Nov;128:115034
pubmed: 31421252
Exp Eye Res. 2017 Jan;154:22-29
pubmed: 27818315
Saudi Med J. 2015 Jul;36(7):794-801
pubmed: 26108582
Front Immunol. 2018 Apr 06;9:700
pubmed: 29681905
Scand J Immunol. 2010 Mar;71(3):134-45
pubmed: 20415779
Nature. 1990 May 31;345(6274):442-4
pubmed: 2188141
Biochem Biophys Res Commun. 2019 Jan 22;508(4):1088-1092
pubmed: 30553450
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12704-9
pubmed: 22802649
Kaohsiung J Med Sci. 2018 Apr;34(4):207-214
pubmed: 29655409
J Biol Chem. 2015 Dec 11;290(50):30163-74
pubmed: 26483549
Mol Cells. 2011 Jun;31(6):573-8
pubmed: 21533547
Endocrinology. 1988 Nov;123(5):2600-2
pubmed: 2844518
J Bone Miner Res. 2011 Apr;26(4):704-17
pubmed: 20939024
Stem Cell Res Ther. 2015 May 27;6:104
pubmed: 26012584
Endocrinology. 1998 Mar;139(3):1329-37
pubmed: 9492069
Am J Orthod Dentofacial Orthop. 2014 Nov;146(5):620-32
pubmed: 25439213
Annu Rev Immunol. 2011;29:71-109
pubmed: 21166540
J Leukoc Biol. 2016 Sep;100(3):481-9
pubmed: 27354413
Arthritis Rheum. 2012 Apr;64(4):1015-23
pubmed: 22034096
Arch Biochem Biophys. 2008 May 15;473(2):201-9
pubmed: 18406338
J Endocrinol. 2017 Jul;234(1):R67-R79
pubmed: 28455432
Endocr Rev. 1999 Jun;20(3):345-57
pubmed: 10368775
Biochem Biophys Res Commun. 1997 May 8;234(1):137-42
pubmed: 9168977
Nat Rev Drug Discov. 2012 May;11(5):401-19
pubmed: 22543469
Am J Orthod Dentofacial Orthop. 2012 Feb;141(2):153-60
pubmed: 22284282

Auteurs

Yuanbo Liu (Y)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Yilong Ai (Y)

Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China.

Xuan Sun (X)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Bowen Meng (B)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Xi Chen (X)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Dongle Wu (D)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Lei Gan (L)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Benyi Yang (B)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Chaoran Fu (C)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Yilin Wu (Y)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Yang Cao (Y)

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.

Classifications MeSH