Impact of Cochlear Implant Array Placement on Speech Perception.
Angular insertion depth
Flat panel CT
Linear insertion depth
Sensorineural hearing loss
Surgical insertion depth
Wrapping factor
Journal
Clinical neuroradiology
ISSN: 1869-1447
Titre abrégé: Clin Neuroradiol
Pays: Germany
ID NLM: 101526693
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
received:
04
08
2020
accepted:
17
05
2021
pubmed:
19
6
2021
medline:
8
3
2022
entrez:
18
6
2021
Statut:
ppublish
Résumé
To assess the role of flat panel computed tomography (FPCT) in the evaluation of cochlear implant (CI) electrode position and its relation to speech perception. From March 2015 to March 2019, we retrospectively enrolled deaf subjects ≥ 18 years who underwent unilateral CI by one surgeon, imaged with FPCT and assessed with disyllabic words score before CI and at 6 months of follow-up. We calculated the disyllabic score difference before CI and after CI (ΔSDS) and divided the subjects in favorable and unfavorable outcome groups using the median ΔSDS as a cutoff. We compared the demographic, clinical, electrode characteristics, and the CI positioning variables scalar position, surgical insertion depth (SID), linear insertion depth (LID), angular insertion depth (AID) and wrapping factor (WF). We studied 50 subjects (F/M = 27/23; median age = 60.5 years, IQR: 50-70 years). The median ΔSDS was 80% (interquartile range [IQR]: 60-100%) in quiet and 80% (IQR: 47.5-100%) in noise. Of the subjects 23 demonstrated a favorable outcome and had earlier age at CI (median 52 years; IQR 45-67 years versus median 62 years; IQR: 56-71 years p = 0.032) and a significantly higher SID (median: 4.02 mm IQR: 3.00-5.35 mm versus median: 2.94 mm IQR: 2.06-3.90 mm; p = 0.029). No difference was found for LID (p = 0.977), AID (p = 0.302), and WF (p = 0.224). A logistic regression model built with the age at CI, number of CI electrodes, and the SID was significant χ2 ((df = 3, N = 50) = 14.517, p = 0.002). The model explained 33.7% (Nagelkerke R2) of ΔSDS variance and correctly classified 76% of the cases. The SID measured by FPCT predicts the ΔSDS at 6 months follow-up, alongside with age at implantation and number of CI electrodes.
Identifiants
pubmed: 34142163
doi: 10.1007/s00062-021-01046-w
pii: 10.1007/s00062-021-01046-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
175-183Informations de copyright
© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Kong YY, Stickney GS, Zeng FG. Speech and melody recognition in binaurally combined acoustic and electric hearing. J Acoust Soc Am. 2005;117:1351–61.
doi: 10.1121/1.1857526
Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope. 2003;113:1726–30.
doi: 10.1097/00005537-200310000-00012
Dallos P. Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR, editors. The cochlea. Berlin, Heidelberg, New York: Springer; 1996. pp. 1–43.
doi: 10.1007/978-1-4612-0757-3
Wanna GB, O’Connell BP, Francis DO, Gifford RH, Hunter JB, Holder JT, Bennett ML, Rivas A, Labadie RF, Haynes DS. Predictive factors for short- and long-term hearing preservation in cochlear implantation with conventional-length electrodes. Laryngoscope. 2018;128:482–9.
doi: 10.1002/lary.26714
Holden LK, Finley CC, Firszt JB, Holden TA, Brenner C, Potts LG, Gotter BD, Vanderhoof SS, Mispagel K, Heydebrand G, Skinner MW. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 2013;34:342–60.
doi: 10.1097/AUD.0b013e3182741aa7
O’Connell BP, Cakir A, Hunter JB, Francis DO, Noble JH, Labadie RF, Zuniga G, Dawant BM, Rivas A, Wanna GB. Electrode Location and Angular Insertion Depth Are Predictors of Audiologic Outcomes in Cochlear Implantation. Otol Neurotol. 2016;37:1016–23.
doi: 10.1097/MAO.0000000000001125
van der Marel KS, Briaire JJ, Verbist BM, Muurling TJ, Frijns JH. The influence of cochlear implant electrode position on performance. Audiol Neurootol. 2015;20:202–11.
doi: 10.1159/000377616
Czerny C, Steiner E, Gstoettner W, Baumgartner WD, Imhof H. Postoperative radiographic assessment of the Combi 40 cochlear implant. AJR Am J Roentgenol. 1997;169:1689–94.
doi: 10.2214/ajr.169.6.9393191
Xu J, Xu SA, Cohen LT, Clark GM. Cochlear view: postoperative radiography for cochlear implantation. Am J Otol. 2000;21(1):49–56.
doi: 10.1016/S0196-0709(00)80075-7
Swartz JD, Russell KB, Wolfson RJ, Marlowe FI. High resolution computed tomography in evaluation of the temporal bone. Head Neck Surg. 1984;6:921–31.
doi: 10.1002/hed.2890060506
Fritz P, Rieden K, Lenarz T, Haels J, zum Winkel K. Radiological evaluation of temporal bone disease: high-resolution computed tomography versus conventional X-ray diagnosis. Br J Radiol. 1989;62:107–13.
doi: 10.1259/0007-1285-62-734-107
Whiting BR, Holden TA, Brunsden BS, Finley CC, Skinner MW. Use of computed tomography scans for cochlear implants. J Digit Imaging. 2008;21:323–8.
doi: 10.1007/s10278-007-9045-4
Whiting BR, Bae KT, Skinner MW. Cochlear implants: three-dimensional localization by means of coregistration of CT and conventional radiographs. Radiology. 2001;221:543–9.
doi: 10.1148/radiol.2212010275
van Wermeskerken GK, van Olphen AF, Graamans K. Imaging of electrode position in relation to electrode functioning after cochlear implantation. Eur Arch Otorhinolaryngol. 2009;266:1527–31.
doi: 10.1007/s00405-009-0939-2
Pearl MS, Roy A, Limb CJ. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants. AJNR Am J Neuroradiol. 2014;35:1202–8.
doi: 10.3174/ajnr.A3814
Kennedy TA, Connell N, Szczykutowicz T, Schafer S, Royalty K, Nace S, Gartrell B, Gubbels S. Flat-Panel CT for Cochlear Implant Electrode Imaging: Comparison to Multi-Detector CT. Otol Neurotol. 2016;37:1646–53.
doi: 10.1097/MAO.0000000000001216
Jiam NT, Gilbert M, Cooke D, Jiradejvong P, Barrett K, Caldwell M, Limb CJ. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. JAMA Otolaryngol Head Neck Surg. 2019;145:109–16.
doi: 10.1001/jamaoto.2018.3096
Nordfalk KF, Rasmussen K, Hopp E, Bunne M, Silvola JT, Jablonski GE. Insertion Depth in Cochlear Implantation and Outcome in Residual Hearing and Vestibular Function. Ear Hear. 2016;37:e129–37.
doi: 10.1097/AUD.0000000000000241
Menegatti Pavan AL, Alves AFF, Giacomini G, Altemani JMC, Castilho AM, Lauria RA, da Silva VAR, Guimarães AC, de Pina DR. Cochlear implants: Insertion assessment by computed tomography. Am J Otolaryngol. 2018;39:431–5.
doi: 10.1016/j.amjoto.2018.04.009
Verschuur C, Hellier W, Teo C. An evaluation of hearing preservation outcomes in routine cochlear implant care: implications for candidacy. Cochlear Implants Int. 2016;17(Suppl 1):62–5.
doi: 10.1080/14670100.2016.1152007
O’Connell BP, Hunter JB, Haynes DS, Holder JT, Dedmon MM, Noble JH, Dawant BM, Wanna GB. Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope. 2017;127:2352–7.
doi: 10.1002/lary.26467
Yukawa K, Cohen L, Blamey P, Pyman B, Tungvachirakul V, O’Leary S. Effects of insertion depth of cochlear implant electrodes upon speech perception. Audiol Neurootol. 2004;9:163–72.
doi: 10.1159/000077267
Skinner MW, Holden TA, Whiting BR, Voie AH, Brunsden B, Neely JG, Saxon EA, Hullar TE, Finley CC. In vivo estimates of the position of advanced bionics electrode arrays in the human cochlea. Ann Otol Rhinol Laryngol Suppl. 2007;197:2–24.
doi: 10.1177/00034894071160S401
Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol. 2008;29:920–8.
doi: 10.1097/MAO.0b013e318184f492
Skinner MW, Ketten DR, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J Assoc Res Otolaryngol. 2002;3:332–50.
doi: 10.1007/s101620020013
Filipo R, Mancini P, Panebianco V, Viccaro M, Covelli E, Vergari V, Passariello R. Assessment of intracochlear electrode position and correlation with behavioural thresholds in CII and 90K cochlear implants. Acta Otolaryngol. 2008;128:291–6.
doi: 10.1080/00016480701633733
Dorman MF, Spahr T, Gifford R, Loiselle L, McKarns S, Holden T, Skinner M, Finley C. An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear. J Assoc Res Otolaryngol. 2007;8:234–40.
doi: 10.1007/s10162-007-0071-1
van der Beek FB, Boermans PP, Verbist BM, Briaire JJ, Frijns JH. Clinical evaluation of the Clarion CII HiFocus 1 with and without positioner. Ear Hear. 2005;26:577–92.
doi: 10.1097/01.aud.0000188116.30954.21
Waltzman SB, Fisher SG, Niparko JK, Cohen NL. Predictors of postoperative performance with cochlear implants. Ann Otol Rhinol Laryngol Suppl. 1995;165:15–8.
pubmed: 7717629
Lin FR, Chien WW, Li L, Clarrett DM, Niparko JK, Francis HW. Cochlear implantation in older adults. Medicine. 2012;91:229–41.
doi: 10.1097/MD.0b013e31826b145a
Tun PA, Williams VA, Small BJ, Hafter ER. The effects of aging on auditory processing and cognition. Am J Audiol. 2012;21:344–50.
doi: 10.1044/1059-0889(2012/12-0030)
Schmiedt RA. The physiology of cochlear presbycusis. In: Gordon-Salant S, Frisina RD, Popper AN, Fay RR, editors. The aging auditory system. New York: Springer; 2010. pp. 9–38.
doi: 10.1007/978-1-4419-0993-0_2
Won JH, Drennan WR, Kang RS, Rubinstein JT. Psychoacoustic abilities associated with music perception in cochlear implant users. Ear Hear. 2010;31:796–805.
doi: 10.1097/AUD.0b013e3181e8b7bd
Dincer D’Alessandro H, Ballantyne D, Boyle PJ, De Seta E, DeVincentiis M, Mancini P. Temporal Fine Structure Processing, Pitch, and Speech Perception in Adult Cochlear Implant Recipients. Ear Hear. 2018;39:679–86.
doi: 10.1097/AUD.0000000000000525
Shannon RV, Fu QJ, Galvin J 3rd. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl. 2004;552:50–4.
doi: 10.1080/03655230410017562
Snel-Bongers J, Briaire JJ, Vanpoucke FJ, Frijns JHM. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation. Ear Hear. 2012;33:367–76.
doi: 10.1097/AUD.0b013e318234efd5
Jones GL, Won JH, Drennan WR, Rubinstein JT. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users. J Acoust Soc Am. 2013;133:425–33.
doi: 10.1121/1.4768881
Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am. 2001;110:1150–63.
doi: 10.1121/1.1381538
Frijns JHM, Kalkman RK, Vanpoucke FJ, Bongers JS, Briaire JJ. Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Otolaryngol. 2009;129:433–9.
doi: 10.1080/00016480802610218
Biesheuvel JD, Briaire JJ, de Jong MAM, Boehringer S, Frijns JHM. Channel discrimination along all contacts of the cochlear implant electrode array and its relation to speech perception. Int J Audiol. 2019;58:262–8.
doi: 10.1080/14992027.2019.1573384
Stock A, Bozzato V, Kloska SP, Bozzato A, Hoppe U, Hornung J, Dörfler A, Struffert T. Evaluation after cochlear implant surgery: Correlation of clinical outcome and imaging findings using flat detector CT. Clin Neuroradiol. 2020. https://doi.org/10.1007/s00062-020-00922-1
doi: 10.1007/s00062-020-00922-1
pubmed: 32556392
pmcid: 8410718