Particle movements provoke avalanche-like compaction in soft colloid filter cakes.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Jun 2021
18 Jun 2021
Historique:
received:
21
01
2021
accepted:
01
06
2021
entrez:
19
6
2021
pubmed:
20
6
2021
medline:
20
6
2021
Statut:
epublish
Résumé
During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.
Identifiants
pubmed: 34145324
doi: 10.1038/s41598-021-92119-w
pii: 10.1038/s41598-021-92119-w
pmc: PMC8213765
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12836Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB 985
Références
Rautenbach, R. & Melin, T. Membranverfahren (Springer, 2004).
Mohammad, A. W., Ng, C. Y., Lim, Y. P. & Ng, G. H. Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food Bioprocess Technol. 5, 1143–1156 (2012).
doi: 10.1007/s11947-012-0806-9
Jørgensen, M. K., Keiding, K. & Christensen, M. L. On the reversibility of cake buildup and compression in a membrane bioreactor. J. Membr. Sci. 455, 152–161 (2014).
doi: 10.1016/j.memsci.2013.12.052
Bell, D. J. et al. Hydrogel membranes made from crosslinked microgel multilayers with tunable density. J. Membr. Sci. 620, 118912 (2020).
doi: 10.1016/j.memsci.2020.118912
Foley, G. A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions. J. Membr. Sci. 274, 38–46 (2006).
doi: 10.1016/j.memsci.2005.12.008
Baker, R. . W. Membrane Technology and Applications 2nd edn. (Wiley, 2004).
doi: 10.1002/0470020393
Hwang, K.-J. & Hsueh, C.-L. Dynamic analysis of cake properties in microfiltration of soft colloids. J. Membr. Sci. 214, 259–273 (2003).
doi: 10.1016/S0376-7388(02)00556-2
Hwang, K.-J., Wang, Y.-T., Iritani, E. & Katagiri, N. Effects of porous gel particle compression properties on microfiltration characteristics. J. Membr. Sci. 341, 286–293 (2009).
doi: 10.1016/j.memsci.2009.06.029
Bouhid de Aguiar, I., Schroën, K., Meireles, M. & Bouchoux, A. Compressive resistance of granular-scale microgels: From loose to dense packing. Colloids Surf. A Physicochem. Eng. Aspects 553, 406–416 (2018).
doi: 10.1016/j.colsurfa.2018.05.064
Mohanty, P. S., Paloli, D., Crassous, J. J., Zaccarelli, E. & Schurtenberger, P. Effective interactions between soft-repulsive colloids: Experiments, theory, and simulations. J. Chem. Phys. 140, 094901 (2014).
pubmed: 24606376
doi: 10.1063/1.4866644
Linkhorst, J., Rabe, J., Hirschwald, L. T., Kuehne, A. J. C. & Wessling, M. Direct observation of deformation in microgel filtration. Sci. Rep. 9, 18998 (2019).
pubmed: 31831846
pmcid: 6908707
doi: 10.1038/s41598-019-55516-w
Mohanty, P. S. et al. Interpenetration of polymeric microgels at ultrahigh densities. Sci. Rep. 7, 1487 (2017).
pubmed: 28469168
pmcid: 5431201
doi: 10.1038/s41598-017-01471-3
Bouhid de Aguiar, I. et al. Deswelling and deformation of microgels in concentrated packings. Sci. Rep. 7, 10223 (2017).
pubmed: 28860537
pmcid: 5579048
doi: 10.1038/s41598-017-10788-y
Lu, W.-M., Tung, K.-L., Hung, S.-M., Shiau, J.-S. & Hwang, K.-J. Constant pressure filtration of monodispersed deformatble particle slurry. Sep. Sci. Technol. 36, 2355–2383 (2001).
doi: 10.1081/SS-100106098
Lu, W.-M., Tung, K.-L., Hung, S.-M., Shiau, J.-S. & Hwang, K.-J. Compression of deformable gel particles. Powder Technol. 116, 1–12 (2001).
doi: 10.1016/S0032-5910(00)00357-0
Li, J. et al. Similarity of wet granular packing to gels. Nat. Commun. 5, 5014 (2014).
pubmed: 25247441
doi: 10.1038/ncomms6014
Oğuz, E. . C. et al. Crystalline multilayers of charged colloids in soft confinement: Experiment versus theory. J. Phys. Condens. Matter 24, 464123 (2012).
pubmed: 23114225
doi: 10.1088/0953-8984/24/46/464123
Lévay, S. et al. Frustrated packing in a granular system under geometrical confinement. Soft Matter 14, 396–404 (2018).
pubmed: 29199308
doi: 10.1039/C7SM01900A
Dullens, R. P. A., Mourad, M. C. D., Aarts, D. G. A. L., Hoogenboom, J. P. & Kegel, W. K. Shape-induced frustration of hexagonal order in polyhedral colloids. Phys. Revi. Lett. 96, 028304 (2006).
doi: 10.1103/PhysRevLett.96.028304
Menut, P., Seiffert, S., Sprakel, J. & Weitz, D. A. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8, 156–164 (2012).
doi: 10.1039/C1SM06355C
Hwang, K.-J., Wang, Y.-T., Iritani, E. & Katagiri, N. Effect of gel particle softness on the performance of cross-flow microfiltration. J. Membr. Sci. 365, 130–137 (2010).
doi: 10.1016/j.memsci.2010.08.043
Di Lorenzo, F. & Seiffert, S. Macro- and microrheology of heterogeneous microgel packings. Macromolecules 46, 1962–1972 (2013).
doi: 10.1021/ma302255x
Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M. J. & Aimar, P. A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions. Chem. Eng. Sci. 57, 77–91 (2002).
doi: 10.1016/S0009-2509(01)00316-5
Meireles, M., Molle, C., Clifton, M. J. & Aimar, P. The origin of high hydraulic resistance for filter cakes of deformable particles: Cell-bed deformation or surface-layer effect?. Chem. Eng. Sci. 59, 5819–5829 (2004).
doi: 10.1016/j.ces.2004.06.040
Bugge, T. V., Jørgensen, M. K., Christensen, M. L. & Keiding, K. Modeling cake buildup under TMP-step filtration in a membrane bioreactor: Cake compressibility is significant. Water Res. 46, 4330–4338 (2012).
pubmed: 22748327
doi: 10.1016/j.watres.2012.06.015
Bouchoux, A., Qu, P., Bacchin, P. & Gesan-Guiziou, G. A general approach for predicting the filtration of soft and permeable colloids: The milk example. Langmuir 30, 22–34 (2014).
pubmed: 24308348
doi: 10.1021/la402865p
Bouhid de Aguiar, I. & Schroën, K. Microfluidics used as a tool to understand and optimize membrane filtration processes. Membranes 10, 316 (2020).
pmcid: 7692330
doi: 10.3390/membranes10110316
Bacchin, P., Marty, A., Duru, P., Meireles, M. & Aimar, P. Colloidal surface interactions and membrane fouling: Investigations at pore scale. Adv. Colloid Interface Sci. 164, 2–11 (2011).
pubmed: 21130419
doi: 10.1016/j.cis.2010.10.005
Sendekie, Z. B. & Bacchin, P. Colloidal jamming dynamics in microchannel bottlenecks. Langmuir ACS J. Surf. Colloids 32, 1478–1488 (2016).
doi: 10.1021/acs.langmuir.5b04218
de van Laar, T., ten Klooster, S., Schroën, K. & Sprakel, J. Transition-state theory predicts clogging at the microscale. Sci. Rep. 6, 28450 (2016).
pubmed: 27328715
pmcid: 4916426
doi: 10.1038/srep28450
Lohaus, J., Perez, Y. M. & Wessling, M. What are the microscopic events of colloidal membrane fouling?. J. Membr. Sci. 553, 90–98 (2018).
doi: 10.1016/j.memsci.2018.02.023
Bouhid de Aguiar, I., Meireles, M., Bouchoux, A. & Schroën, K. Conformational changes influence clogging behavior of micrometer-sized microgels in idealized multiple constrictions. Sci. Rep. 9, 9241 (2019).
pubmed: 31239490
pmcid: 6592940
doi: 10.1038/s41598-019-45791-y
Bouhid de Aguiar, I., Meireles, M., Bouchoux, A. & Schroën, K. Microfluidic model systems used to emulate processes occurring during soft particle filtration. Sci. Rep. 9, 3063 (2019).
pubmed: 30816260
pmcid: 6395687
doi: 10.1038/s41598-019-39820-z
Linkhorst, J., Beckmann, T., Go, D., Kuehne, A. J. C. & Wessling, M. Microfluidic colloid filtration. Sci. Rep. 6, 1–8 (2016).
doi: 10.1038/srep22376
Linkhorst, J. et al. Templating the morphology of soft microgel assemblies using a nanolithographic 3D-printed membrane. Sci. Rep. 11, 1–7 (2021).
doi: 10.1038/s41598-020-80324-y
Lohaus, J., Stockmeier, F., Surray, P., Lölsberg, J. & Wessling, M. What are the microscopic events during membrane backwashing?. J. Membr. Sci. 602, 117886 (2020).
doi: 10.1016/j.memsci.2020.117886
Lüken, A. et al. Unravelling colloid filter cake motions in membrane cleaning procedures. Sci. Rep. 11, 1–7 (2021).
Peyton, S. R., Raub, C. B., Keschrumrus, V. P. & Putnam, A. J. The use of poly(ethylene glycol) hydrogels to investigate the impact of ecm chemistry and mechanics on smooth muscle cells. Biomaterials 27, 4881–4893 (2006).
pubmed: 16762407
doi: 10.1016/j.biomaterials.2006.05.012
Herrick, W. G. et al. Peg-phosphorylcholine hydrogels as tunable and versatile platforms for mechanobiology. Biomacromolecules 14, 2294–2304 (2013).
pubmed: 23738528
doi: 10.1021/bm400418g
Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).
pubmed: 25715979
doi: 10.1021/acsnano.5b00147
Temenoff, J. S., Athanasiou, K. A., Lebaron, R. G. & Mikos, A. G. Effect of poly (ethylene glycol) molecular weight on tensile and swelling properties of oligo (poly (ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res. 59, 429–437 (2002).
pubmed: 11774300
doi: 10.1002/jbm.1259
Bergman, M. J. et al. A new look at effective interactions between microgel particles. Nat. Commun. 9, 1–11 (2018).
doi: 10.1038/s41467-018-07332-5
Gnan, N. & Zaccarelli, E. The microscopic role of deformation in the dynamics of soft colloids. Nat. Phys. 15, 683–688 (2019).
doi: 10.1038/s41567-019-0480-1
Liétor-Santos, J. J., Sierra-Martín, B. & Fernández-Nieves, A. Bulk and shear moduli of compressed microgel suspensions. Phys. Rev. E 84, 060402 (2011).
doi: 10.1103/PhysRevE.84.060402
Hashmi, S. M. & Dufresne, E. R. Mechanical properties of individual microgel particles through the deswelling transition. Soft Matter 5, 3682–3688 (2009).
doi: 10.1039/b906051k
Sierra-Martin, B. et al. Determination of the bulk modulus of microgel particles. Colloid Polym. Sci. 289, 721–728 (2011).
doi: 10.1007/s00396-010-2346-z
Wyss, H. M., Franke, T., Mele, E. & Weitz, D. A. Capillary micromechanics: Measuring the elasticity of microscopic soft objects. Soft Matter 6, 4550 (2010).
doi: 10.1039/c003344h
Lölsberg, J. et al. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres. Lab Chip 18, 1341–1348 (2018).
pubmed: 29619449
doi: 10.1039/C7LC01366C
Bleilevens, C. et al. Microfluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices. Sci. Rep. 8, 8031 (2018).
pubmed: 29795137
pmcid: 5966447
doi: 10.1038/s41598-018-25977-6
Jans, A. et al. Glycan-functionalized microgels for scavenging and specific binding of lectins. Biomacromolecules 18, 1460–1465 (2017).
pubmed: 28257575
doi: 10.1021/acs.biomac.6b01754
Goniva, C., Kloss, C., Hager, A. & Pirker, S. An open source CFD-DEM perspective, Proceedings of OpenFOAM Workshop, Goeteborg, vol. 22-24 (2010).
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. Int. J. 12, 140 (2012).
doi: 10.1504/PCFD.2012.047457
Zhu, H. P., Zhou, Z. Y., Yang, R. Y. & Yu, A. B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007).
doi: 10.1016/j.ces.2006.12.089
Norouzi, H. R., Zarghami, R., Sotudeh-Gharebagh, R. & Mostoufi, N. Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows (Wiley, 2016).
doi: 10.1002/9781119005315