Food-grade carrageenans and their implications in health and disease.
carrageenan
food safety
gut microbiota
inflammation
proteolysis
random coil
Journal
Comprehensive reviews in food science and food safety
ISSN: 1541-4337
Titre abrégé: Compr Rev Food Sci Food Saf
Pays: United States
ID NLM: 101305205
Informations de publication
Date de publication:
07 2021
07 2021
Historique:
revised:
22
04
2021
received:
22
12
2020
accepted:
13
05
2021
pubmed:
20
6
2021
medline:
26
10
2021
entrez:
19
6
2021
Statut:
ppublish
Résumé
Food additives, often used to guarantee the texture, shelf-life, taste, and appearance of processed foods, have gained widespread attention due to their increased link to the growing incidence of chronic diseases. As one of the most common additives, carrageenans have been used in human diets for hundreds of years. While classified as generally recognized as safe (GRAS) for human consumption, numerous studies since the 1980s have suggested that carrageenans, particularly those with random coil conformations, may have adverse effects on gastrointestinal health, including aggravating intestinal inflammation. While these studies have provided some evidence of adverse effects, the topic is still controversial. Some have suggested that the negative consequence of the consumption of carrageenans may be structure dependent. Furthermore, pre-existing conditions may predispose individuals to varied outcomes of carrageenan intake. In this review, structure-function relationships of various carrageenans in the context of food safety are discussed. We reviewed the molecular mechanisms by which carrageenans exert their biological effects. We summarized the findings associated with carrageenan intake in animal models and clinical trials. Moreover, we examined the interactions between carrageenans and the gut microbiome in the pathogenesis of gastrointestinal disorders. This review argues for personalized guidance on carrageenan intake based on individuals' health status. Future research efforts that aim to close the knowledge gap on the effect of low-dose and chronic carrageenan intake as well as interactions among food additives should be conducive to the improved safety profile of carrageenans in processed food products.
Identifiants
pubmed: 34146449
doi: 10.1111/1541-4337.12790
doi:
Substances chimiques
Food Additives
0
Carrageenan
9000-07-1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3918-3936Informations de copyright
© 2021 Institute of Food Technologists. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Références
Abouhussein, D. M. N., Bahaa El Din Mahmoud, D., & Mohammad, F. E. (2019). Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. Journal of Liposome Research, 29(4), 399-412. https://doi.org/10.1080/08982104.2019.1576732
Abraham, R., Benitz, K. F., Mankes, R., & Rosenblum, I. (1985). Chronic and subchronic effects of various forms of carrageenan in rats. Ecotoxicology and Environmental Safety, 10(2), 173-183. https://doi.org/10.1016/0147-6513(85)90063-6
Anderson, W., & Baillie, A. J. (1967). Carrageenans and the proteolytic activity of human gastric secretion. Journal of Pharmacy and Pharmacology, 19(11), 720-728. https://doi.org/10.1111/j.2042-7158.1967.tb08023.x
Anderson, W., & Harthill, J. (1967). Degraded and undegraded carrageenans and antipeptic activity. Journal of Pharmacy and Pharmacology, 19(7), 460-467.
Bach Knudsen, K. E., Laerke, H. N., Hedemann, M. S., Nielsen, T. S., Ingerslev, A. K., Gundelund Nielsen, D. S., Theil, P. K., Purup, S., Hald, S., Schioldan, A. G., Marco, M. L., Gregersen, S., & Hermansen, K. (2018). Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients, 10(10), 1499. https://doi.org/10.3390/nu10101499
Bai, J. P. F., Burckart, G. J., & Mulberg, A. E. (2016). Literature review of gastrointestinal physiology in the elderly, in pediatric patients, and in patients with gastrointestinal diseases. Journal of Pharmaceutical Sciences, 105(2), 476-483. https://doi.org/10.1002/jps.24696
Barth, C. R., Funchal, G. A., Luft, C., de Oliveira, J. R., Porto, B. N., & Donadio, M. V. (2016). Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology, 46(4), 964-970. https://doi.org/10.1002/eji.201545520
Benard, C., Cultrone, A., Michel, C., Rosales, C., Segain, J.-P., Lahaye, M., Galmiche, J. P., Cherbut, C., & Blottiere, H. M. (2010). Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-[kappa]B activation. Plos One, 5, e8666.
Bernert, C. P., Ciangura, C., Coupaye, M., Czernichow, S., Bouillot, J., & Basdevant, A. (2007). Nutritional deficiency after gastric bypass: Diagnosis, prevention and treatment. Diabetes & Metabolism, 33(1), 13-24.
Bhattacharyya, S., Borthakur, A., Dudeja, P. K., & Tobacman, J. K. (2007). Carrageenan reduces bone morphogenetic protein-4 (BMP4) and activates the Wnt/beta-catenin pathway in normal human colonocytes. Digestive Diseases and Sciences, 52(10), 2766-2774. https://doi.org/10.1007/s10620-006-9531-4
Bhattacharyya, S., Borthakur, A., Dudeja, P. K., & Tobacman, J. K. (2008). Carrageenan induces cell cycle arrest in human intestinal epithelial cells in vitro. Journal of Nutrition, 138(3), 469-475. https://doi.org/10.1093/jn/138.3.469
Bhattacharyya, S., Dudeja, P. K., & Tobacman, J. K. (2008). Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochimica et Biophysica Acta, 1780(7-8), 973-982. https://doi.org/10.1016/j.bbagen.2008.03.019
Bhattacharyya, S., Feferman, L., & Tobacman, J. K. (2014). Increased expression of colonic Wnt9A through Sp1-mediated transcriptional effects involving arylsulfatase B, chondroitin 4-sulfate, and galectin-3. Journal of Biological Chemistry, 289(25), 17564-17575. https://doi.org/10.1074/jbc.M114.561589
Bhattacharyya, S., Feferman, L., & Tobacman, J. K. (2019). Distinct effects of carrageenan and high-fat consumption on the mechanisms of insulin resistance in nonobese and obese models of type 2 diabetes. Journal of Diabetes Research, 2019, 9582714. https://doi.org/10.1155/2019/9582714
Bhattacharyya, S., Liu, H., Zhang, Z., Jam, M., Dudeja, P. K., Michel, G., Linhardt, R. J., & Tobacman, J. K. (2010). Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. The Journal of Nutritional Biochemistry, 21(10), 906-913. https://doi.org/10.1016/j.jnutbio.2009.07.002
Bhattacharyya, S., Shumard, T., Xie, H., Dodda, A., Varady, K. A., Feferman, L., Halline, A. G., Goldstein, J. L., Hanauer, S. B., & Tobacman, J. K. (2017). A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutrition and Healthy Aging, 4(2), 181-192. https://doi.org/10.3233/NHA-170023
Bhattacharyya, S., Xue, L., Devkota, S., Chang, E., Morris, S., & Tobacman, J. K. (2013). Carrageenan-induced colonic inflammation is reduced in Bcl10 null mice and increased in IL-10-deficient mice. Mediators of Inflammation, 2013, 397642. https://doi.org/10.1155/2013/397642
Bode, L., Salvestrini, C., Park, P. W., Li, J. P., Esko, J. D., Yamaguchi, Y., Murch, S., & Freeze, H. H. (2008). Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. Journal of Clinical Investigation, 118(1), 229-238. https://doi.org/10.1172/JCI32335
Borthakur, A., Bhattacharyya, S., Anbazhagan, A. N., Kumar, A., Dudeja, P. K., & Tobacman, J. K. (2012). Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFkappaB-BCL10 loop. Biochimica Et Biophysica Acta, 1822(8), 1300-1307. https://doi.org/10.1016/j.bbadis.2012.05.001
Calvo, G. H., Cosenza, V. A., Sáenz, D. A., Navarro, D. A., Stortz, C. A., Céspedes, M. A., Mamone, L. A., Casas, A. G., & Di Venosa, G. M. (2019). Disaccharides obtained from carrageenans as potential antitumor agents. Scientific Reports, 9(1), 6654. https://doi.org/10.1038/s41598-019-43238-y
Campo, V. L., Kawano, D. F., Silva, D. B. d., & Carvalho, I. (2009). Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydrate Polymers, 77(2), 167-180. https://doi.org/10.1016/j.carbpol.2009.01.020
Cani, P. D., Everard, A., & Duparc, T. (2013). Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology, 13(6), 935-940. https://doi.org/10.1016/j.coph.2013.09.008
Carthew, P. (2002). Safety of carrageenan in foods. Environmental Health Perspectives, 110(4), A176. https://doi.org/10.1289/ehp.110-a176a
Chami, B., Martin, N. J. J., Dennis, J. M., & Witting, P. K. (2018). Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Archives of Biochemistry and Biophysics, 645, 61-71. https://doi.org/10.1016/j.abb.2018.03.012
Chauhan, P. S., & Saxena, A. (2016). Bacterial carrageenases: An overview of production and biotechnological applications. 3 Biotech, 6(2), 146-146. https://doi.org/10.1007/s13205-016-0461-3
Chazelas, E., Deschasaux, M., Srour, B., Kesse-Guyot, E., Julia, C., Alles, B., Druesne-Pecollo, N., Galan, P., Hercberg, S., Latino-Martel, P., Esseddik, Y., Szabo, F., Slamich, P., Gigandet, S., & Touvier, M. (2020). Food additives: Distribution and co-occurrence in 126,000 food products of the French market. Scientific Reports, 10(1), 3980. https://doi.org/10.1038/s41598-020-60948-w
Cheng, T. F., Zhao, J., Wu, Q. L., Zeng, H. W., Sun, Y. T., Zhang, Y. H., Mi, R., Qi, X. P., Zou, J. T., Liu, A. J., Jin, H. Z., & Zhang, W. D. (2020). Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. Phytomedicine, 79, 153330. https://doi.org/10.1016/j.phymed.2020.153330
Chin, Y. X., Mi, Y., Cao, W. X., Lim, P. E., Xue, C. H., & Tang, Q. J. (2019). A pilot study on anti-obesity mechanisms of Kappaphycus Alvarezii: The role of native kappa-carrageenan and the leftover sans-carrageenan fraction. Nutrients, 11(5), 1133. https://doi.org/10.3390/nu11051133
Choi, H. J., Kim, J., Park, S. H., Do, K. H., Yang, H., & Moon, Y. (2012). Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells. Toxicology Letters, 211(3), 289-295. https://doi.org/10.1016/j.toxlet.2012.04.012
Ciancia, M., Matulewicz, M. C., & Tuvikene, R. (2020). Structural diversity in galactans from red seaweeds and its influence on rheological properties. Frontiers in Plant Science, 11, 559986. https://doi.org/10.3389/fpls.2020.559986
Cotas, J., Marques, V., Afonso, M. B., Rodrigues, C. M. P., & Pereira, L. (2020). Antitumour potential of gigartina pistillata carrageenans against colorectal cancer stem cell-enriched tumourspheres. Marine Drugs, 18(1), 50. https://doi.org/10.3390/md18010050
Curtis, M. M., Hu, Z., Klimko, C., Narayanan, S., Deberardinis, R., & Sperandio, V. (2014). The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe, 16(6), 759-769. https://doi.org/10.1016/j.chom.2014.11.005
David-Birman, T., Mackie, A., & Lesmes, U. (2013). Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids, 31(1), 33-41. https://doi.org/10.1016/j.foodhyd.2012.09.013
David, S., Magram Klaiman, M., Shpigelman, A., & Lesmes, U. (2020). Addition of anionic polysaccharide stabilizers modulates in vitro digestive proteolysis of a chocolate milk drink in adults and children. Foods, 9(9), 1253. https://doi.org/10.3390/foods9091253
David, S., Shani Levi, C., Fahoum, L., Ungar, Y., Meyron-Holtz, E. G., Shpigelman, A., & Lesmes, U. (2018). Revisiting the carrageenan controversy: Do we really understand the digestive fate and safety of carrageenan in our foods? Food & Function, 9(3), 1344-1352. https://doi.org/10.1039/c7fo01721a
David, S., Wojciechowska, A., Portmann, R., Shpigelman, A., & Lesmes, U. (2020). The impact of food-grade carrageenans and consumer age on the in vitro proteolysis of whey proteins. Food Research International, 130, 108964. https://doi.org/10.1016/j.foodres.2019.108964
de Maat, S., Sanrattana, W., Mailer, R. K., Parr, N. M. J., Hessing, M., Koetsier, R. M., Meijers, J. C. M., Pasterkamp, G., Renné, T., & Maas, C. (2019). Design and characterization of alpha1-antitrypsin variants for treatment of contact system-driven thromboinflammation. Blood, 134(19), 1658-1669. https://doi.org/10.1182/blood.2019000481
de Oliveira, S., Reyes-Aldasoro, C. C., Candel, S., Renshaw, S. A., Mulero, V., & Calado, A. (2013). Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. Journal of Immunology (Baltimore, Md.: 1950), 190(8), 4349-4359. https://doi.org/10.4049/jimmunol.1203266
Drohan, D., Tziboula, A., McNulty, D., & Horne, D. (1997). Milk protein-carrageenan interactions. Food Hydrocolloids, 11(1), 101-107.
Duffy, J. E., Godwin, C. M., & Cardinale, B. J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549(7671), 261-264. https://doi.org/10.1038/nature23886
Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066-9071. http://www.jstor.org/stable/42657214
Everard, A., Geurts, L., Caesar, R., Van Hul, M., Matamoros, S., Duparc, T., Denis, R. P. G., Cochez, P., Pierard, F., Castel, J., Bindels, L. B., Plovier, H., Robine, S., Muccioli, G. G., Renauld, J. C., Dumoutier, L., Delzenne, N. M., Luquet, S., Bäckhed, F., & Cani, P. D. (2014). Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 5(1), 5648. https://doi.org/10.1038/ncomms6648
Fahoum, L., Moscovici, A., David, S., Shaoul, R., Rozen, G., Meyron-Holtz, E. G., & Lesmes, U. (2017). Digestive fate of dietary carrageenan: Evidence of interference with digestive proteolysis and disruption of gut epithelial function. Molecular Nutrition & Food Research, 61(3), 1600545.
Falshaw, R., Bixler, H. J., & Johndro, K. (2001). Structure and performance of commercial kappa-2 carrageenan extracts: I. Structure analysis. Food Hydrocolloids, 15(4), 441-452. https://doi.org/10.1016/S0268-005X(01)00066-2
Fan, P., Li, L., Rezaei, A., Eslamfam, S., Che, D., & Ma, X. (2015). Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 16(7), 646-654. https://doi.org/10.2174/1389203716666150630133657
Farre, R., Fiorani, M., Abdu Rahiman, S., & Matteoli, G. (2020). Intestinal permeability, inflammation and the role of nutrients. Nutrients, 12(4), 1185. https://doi.org/10.3390/nu12041185
Fuerer, C., Habib, S. J., & Nusse, R. (2010). A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 239(1), 184-190. https://doi.org/10.1002/dvdy.22067
Gatfield, I. L., & Stute, R. (1972). Enzymatic reactions in the presence of polymers. The competitive inhibition of trypsin by lambda-carrageenan. FEBS Letters, 28(1), 29-31. https://doi.org/10.1016/0014-5793(72)80669-0
Gerasimidis, K., Bryden, K., Chen, X., Papachristou, E., Verney, A., Roig, M., Hansen, R., Nichols, B., Papadopoulou, R., & Parrett, A. (2020). The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European Journal of Nutrition, 59(7), 3213-3230. https://doi.org/10.1007/s00394-019-02161-8
Ghanbarzadeh, M., Golmoradizadeh, A., & Homaei, A. (2018). Carrageenans and Carrageenases: Versatile polysaccharides and promising marine enzymes. Phytochemistry Reviews, 17(3), 535-571. https://doi.org/10.1007/s11101-018-9548-2
Goff, H. D., & Guo, Q. (2020). The role of hydrocolloids in the development of food structure. In Handbook of food structure development (pp. 1-28). The Royal Society of Chemistry.
Hacilar, H., Nalbantoglu, O. U., Aran, O., & Bakir-Gungor, B. (2020). Inflammatory bowel disease biomarkers of human gut microbiota selected via ensemble feature selection methods. arXiv:2001.03019.
Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C., & Boraston, A. B. (2012). Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19786-19791. https://doi.org/10.1073/pnas.1211002109
Hirschelmann, R., & Bekemeier, H. (1987). Thrombosis (infarction) induced by kappa-carrageenin in rat tail: Inhibition during adjuvant arthritis. Experimental Pathology, 31(3), 175-178. https://doi.org/10.1016/s0232-1513(87)80105-6
Jiang, H. Y., Wang, F., Chen, H. M., & Yan, X. J. (2013). κ-carrageenan induces the disruption of intestinal epithelial Caco-2 monolayers by promoting the interaction between intestinal epithelial cells and immune cells. Molecular Medicine Reports, 8(6), 1635-1642. https://doi.org/10.3892/mmr.2013.1726
Karamanos, Y., Ondarza, M., Bellanger, F., Christiaen, D., & Moreau, S. (1989). The linkage of 4-O-methyl-l-galactopyranose in the agar polymers from Gracilaria verrucosa. Carbohydrate Research, 187(1), 93-101. https://doi.org/10.1016/0008-6215(89)80057-6
Kim, D., & Kang, S. M. (2020). Red algae-derived carrageenan coatings for marine antifouling applications. Biomacromolecules, 21(12), 5086-5092. https://doi.org/10.1021/acs.biomac.0c01248
Khan, J., & Islam, M. N. (2012). Morphology of the intestinal barrier in different physiological and pathological conditions. In E. Problet (Ed.), Chapter 8 Histopathology - Reviews and recent advances. IntechOpen.
Khan, S., Waliullah, S., Godfrey, V., Khan, M. A. W., Ramachandran, R. A., Cantarel, B. L., Behrendt, C., Peng, L., Hooper, L. V., & Zaki, H. (2020). Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Science Translational Medicine, 12(567), eaay6218. https://doi.org/10.1126/scitranslmed.aay6218
Knutsen, S. H., Myslabodski, D. E., Larsen, B., & Usov, A. I. (1994). A modified system of nomenclature for red algal galactans. Botanica Marina, 37(2), 163-170. https://doi.org/10.1515/botm.1994.37.2.163
Kulkarni, R., Kompalli, K., Gaddam, N., Chandrashekar, V., Darna, B., Garlapati, A., Kumar, D., & Machha, B. (2020). Synthesis, characterization, antitubercular and anti-inflammatory activity of new pyrazolo[3,4-d]pyrimidines. Combinatorial Chemistry & High Throughput Screening, 23, 112. https://doi.org/10.2174/1386207323999200918114905
Lapointe, T. K., O'Connor, P. M., & Buret, A. G. (2009). The role of epithelial malfunction in the pathogenesis of enteropathogenic E. coli-induced diarrhea. Laboratory Investigation: A Journal of Technical Methods and Pathology, 89(9), 964-970. https://doi.org/10.1038/labinvest.2009.69
Lee, C. (2020). Carrageenans as broad-spectrum microbicides: Current status and challenges. Marine Drugs, 18(9), 435. https://doi.org/10.3390/md18090435
Li, M., Shang, Q., Li, G., Wang, X., & Yu, G. (2017). Degradation of marine algae-derived carbohydrates by bacteroidetes isolated from human gut microbiota. Marine Drugs, 15(4), 92. https://doi.org/10.3390/md15040092
Li, Y., Wang, Y., Zhang, L., Yan, Z., Shen, J., Chang, Y., & Wang, J. (2020). iota-Carrageenan tetrasaccharide from iota-carrageenan inhibits islet beta cell apoptosis via the upregulation of GLP-1 to inhibit the mitochondrial apoptosis pathway. Journal of Agricultural and Food Chemistry, 69, 212-222. https://doi.org/10.1021/acs.jafc.0c06456
Li, X., Wan, H., Dong, P., Wang, B., Zhang, L., Hu, Q., Zhang, T., Feng, J., He, F., Bai, C., Zhang, L., & Tao, W. (2020). Discovery of SHR0687, a highly potent and peripheral nervous system-restricted KOR agonist. ACS Medicinal Chemistry Letters, 11(11), 2151-2155. https://doi.org/10.1021/acsmedchemlett.0c00287
Ma, X., Fan, P. X., Li, L. S., Qiao, S. Y., Zhang, G. L., & Li, D. F. (2012). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. Journal of Animal Science, 90(Suppl 4), 266-268. https://doi.org/10.2527/jas.50965
Ma, C., Li, Q., & Dai, X. (2021). Carrageenan oligosaccharides extend life span and health span in male drosophila melanogaster by modulating antioxidant activity, immunity, and gut microbiota. Journal of Medicinal Food, 24(1), 101-109. https://doi.org/10.1089/jmf.2019.4663
McKim, J. M. (2014). Food additive carrageenan: Part I: A critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Critical Reviews in Toxicology, 44(3), 211-243. https://doi.org/10.3109/10408444.2013.861797
McKim, J. M. Jr., Baas, H., Rice, G. P., Willoughby, J. A. Sr., Weiner, M. L., & Blakemore, W. (2016). Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food and Chemical Toxicology, 96, 1-10. https://doi.org/10.1016/j.fct.2016.07.006
McKim, J. M., Willoughby, J. A. Sr., Blakemore, W. R., & Weiner, M. L. (2019). Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Critical Reviews in Food Science and Nutrition, 59(19), 3054-3073. https://doi.org/10.1080/10408398.2018.1481822
Mi, Y., Chin, Y. X., Cao, W. X., Chang, Y. G., Lim, P. E., Xue, C. H., & Tang, Q. J. (2020). Native kappa-carrageenan induced-colitis is related to host intestinal microecology. International Journal of Biological Macromolecules, 147, 284-294. https://doi.org/10.1016/j.ijbiomac.2020.01.072
Michel, C., & Macfarlane, G. T. (1996). Digestive fates of soluble polysaccharides from marine macroalgae: Involvement of the colonic microflora and physiological consequences for the host. Journal of Applied Bacteriology, 80(4), 349-369. https://doi.org/10.1111/j.1365-2672.1996.tb03230.x
Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., & Helbert, W. (2006). Bioconversion of red seaweed galactans: A focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology, 71(1), 23-33. https://doi.org/10.1007/s00253-006-0377-7
Miranda, P. M., De Palma, G., Serkis, V., Lu, J., Louis-Auguste, M. P., McCarville, J. L., Verdu, E. F., Collins, S. M., & Bercik, P. (2018). High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 6(1), 57. https://doi.org/10.1186/s40168-018-0433-4
Morris, E. R., Rees, D. A., & Robinson, G. (1980). Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. Journal of Molecular Biology, 138(2), 349-362. https://doi.org/10.1016/0022-2836(80)90291-0
Munyaka, P. M., Sepehri, S., Ghia, J. E., & Khafipour, E. (2016). Carrageenan gum and adherent invasive escherichia coli in a piglet model of inflammatory bowel disease: Impact on intestinal mucosa-associated microbiota. Front Microbiol, 7, 462. https://doi.org/10.3389/fmicb.2016.00462
Murphy, D. (1995). Coming into its own: Once considered a labeling liability, carrageenan is proving to be a versatile, effective ingredient for further processed meats and poultry. National Provisioner, 5, 60-66
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27-31. https://doi.org/10.4103/0976-0105.177703
Neis, E. P., Dejong, C. H., & Rensen, S. S. (2015). The role of microbial amino acid metabolism in host metabolism. Nutrients, 7(4), 2930-2946. https://doi.org/10.3390/nu7042930
Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine, 49(5), e338. https://doi.org/10.1038/emm.2017.20
Paoletti, S., Delben, F., Cesaro, A., & Grasdalen, H. (1985). Conformational transition of .kappa.-carrageenan in aqueous solution. Macromolecules, 18(10), 1834-1841. https://doi.org/10.1021/ma00152a008
Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69(12), 2232-2243. https://doi.org/10.1136/gutjnl-2020-322260
Paradis, T., Begue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight junctions as a key for pathogens invasion in intestinal epithelial cells. International Journal of Molecular Sciences, 22(5), 2506. https://doi.org/10.3390/ijms22052506
Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition, 139(9), 1619-1625. https://doi.org/10.3945/jn.109.104638
Pomin, V. H. (2015). Sulfated glycans in inflammation. European Journal of Medicinal Chemistry, 92, 353-369. https://doi.org/10.1016/j.ejmech.2015.01.002
Pricolo, V. E., Madhere, S. M., Finkelstein, S. D., & Reichner, J. S. (1996). Effects of lambda-carrageenan induced experimental enterocolitis on splenocyte function and nitric oxide production. Journal of Surgical Research, 66(1), 6-11. https://doi.org/10.1006/jsre.1996.0364
Pudlo, N., Pereira, G. V., Parnami, J., Cid, M., Markert, S., Tingley, J., Unfried, F., Ali, A., Campbell, A., Urs, K., Xiao, Y., Adams, R., Martin, D., Bolam, D. M., Becher, D., Schmidt, T. M., Abbott, D. W., Schweder, T., Hehemann, J. H., & Martens, E. (2020). Extensive transfer of genes for edible seaweed digestion from marine to human gut bacteria. bioRxiv.
Rees, D. A. (1963). 340. The carrageenan system of polysaccharides. Part I. The relation between the κ- and λ-components. Journal of the Chemical Society, 1963, 1821-1832. https://doi.org/10.1039/JR9630001821
Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L. R., Scaldaferri, F., Pulcini, G., Miggiano, G. A. D., & Mele, M. C. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393
Sanchez-Villamil, J., & Navarro-Garcia, F. (2015). Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiology, 10(6), 1009-1033. https://doi.org/10.2217/fmb.15.17
Schefer, L., Usov, I., & Mezzenga, R. (2015). Anomalous stiffening and ion-induced coil-helix transition of carrageenans under monovalent salt conditions. Biomacromolecules, 16(3), 985-991. https://doi.org/10.1021/bm501874k
Schroeder, B. O., Birchenough, G. M. H., Pradhan, M., Nystrom, E. E. L., Henricsson, M., Hansson, G. C., & Backhed, F. (2020). Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. Journal of Biological Chemistry, 295(46), 15712-15726. https://doi.org/10.1074/jbc.RA120.015771
Shah, Z. C., & Huffman, F. G. (2003). Current availability and consumption of carrageenan-containing foods. Ecology of Food and Nutrition, 42 (6), 357-371. https://doi.org/10.1080/03670240390265175
Shang, Q., Sun, W., Shan, X., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2017). Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters, 279, 87-95
Shang, Q., Jiang, H., Cai, C., Hao, J., Li, G., & Yu, G. (2018). Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydrate Polymers, 179, 173-185. https://doi.org/10.1016/j.carbpol.2017.09.059
Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 73-73. https://doi.org/10.1186/s12967-017-1175-y
Sjoling, A., Sadeghipoorjahromi, L., Novak, D., & Tobias, J. (2015). Detection of major diarrheagenic bacterial pathogens by multiplex PCR panels. Microbiological Research, 172, 34-40. https://doi.org/10.1016/j.micres.2014.12.003
Sokolova, E., Bogdanovich, L. N., Ivanova, T. B., Byankina, A. O., Kryzhanovskiy, S. P., & Yermak, I. (2014). Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. PharmaNutrition, 2(2), 33-37. https://doi.org/10.1016/j.phanu.2014.02.001
Souto, A. L., Tavares, J. F., da Silva, M. S., Diniz Mde, F., de Athayde-Filho, P. F., & Barbosa Filho, J. M. (2011). Anti-inflammatory activity of alkaloids: An update from 2000 to 2010. Molecules (Basel, Switzerland), 16(10), 8515-8534. https://doi.org/10.3390/molecules16108515
Stadnyk, A. W. (2002). Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Canadian Journal of Gastroenterology, 16(4), 241-246. https://doi.org/10.1155/2002/941087
Stortz, C. A., & Cerezo, A. S. (1992). The 13C NMR spectroscopy of carrageenans: Calculation of chemical shifts and computer-aided structural determination. Carbohydrate Polymers, 18(4), 237-242. https://doi.org/10.1016/0144-8617(92)90088-8
Tanna, B., & Mishra, A. (2019). Nutraceutical potential of seaweed polysaccharides: structure, bioactivity, safety, and toxicity. Comprehensive Reviews in Food Science and Food Safety, 18(3), 817-831. https://doi.org/10.1111/1541-4337.12441
Tatara, M. R., Krupski, W., Szpetnar, M., Dabrowski, A., Bury, P., Szabelska, A., Charuta, A., Boguszewska-Czubara, A., Maciejewski, R., & Wallner, G. (2015). Effects of total gastrectomy on plasma silicon and amino acid concentrations in men. Experimental Biology and Medicine (Maywood, N.J.), 240(12), 1557-1563. https://doi.org/10.1177/1535370215588925
Tatara, M. R., Śliwa, E., Krupski, W., & Worzakowska, M. (2008). 3-Hydroxy-3-methylbutyrate administration diminishes fundectomy-induced osteopenia of the lumbar spine in pigs. Nutrition (Burbank, Los Angeles County, Calif.), 24(7-8), 753-760.
Tkachenko, A., Onishchenko, A., Roshal, A., Nakonechna, O., Chumachenko, T., & Posokhov, Y. (2021). Effects of semi-refined carrageenan (food additive E407a) on cell membranes of leukocytes assessed in vivo and in vitro. Medicinski Glasnik (Zenica), 18(1), 176-183. https://doi.org/10.17392/1213-21
Tkachenko, A. S., Kot, Y. G., Kapustnik, V. A., Myasoedov, V. V., Makieieva, N. I., Chumachenko, T. O., Onishchenko, A. I., Lukyanova, Y. M., & Nakonechna, O. A. (2021). Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr, 173(3-4), 68-78. https://doi.org/10.1007/s10354-020-00786-7
Tobacman, J. K. (2001). Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10), 983-994. https://doi.org/10.1289/ehp.01109983
Usov, A. I. (1992). Sulfated polysaccharides of the red seaweeds. Food Hydrocolloids, 6(1), 9-23. https://doi.org/10.1016/S0268-005X(09)80055-6
van de Velde, F., Antipova, A. S., Rollema, H. S., Burova, T. V., Grinberg, N. V., Pereira, L., Gilsenan, P. M., Tromp, R. H., Rudolph, B., & Grinberg, V. Y. (2005). The structure of kappa/iota-hybrid carrageenans II. Coil-helix transition as a function of chain composition. Carbohydrate Research, 340(6), 1113-1129. https://doi.org/10.1016/j.carres.2005.02.015
van der Lugt, B., van Beek, A. A., Aalvink, S., Meijer, B., Sovran, B., Vermeij, W. P., Brandt, R. M. C., de Vos, W. M., Savelkoul, H. F. J., Steegenga, W. T., & Belzer, C. (2019). Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1 (-/Δ7) mice. Immunity & Ageing, 16, 6. https://doi.org/10.1186/s12979-019-0145-z
Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821-834. https://doi.org/10.1080/17474124.2017.1343143
Vo, T. D., Lynch, B. S., & Roberts, A. (2019). Dietary exposures to common emulsifiers and their impact on the gut microbiota: Is there a cause for concern? Comprehensive reviews Food Science and Food Safety, 18(1), 31-47. https://doi.org/10.1111/1541-4337.12410
Wang, M., Liu, X., Lyu, Z., Gu, H., Li, D., & Chen, H. (2017). Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids and Surfaces. B, Biointerfaces, 150, 175-182. https://doi.org/10.1016/j.colsurfb.2016.11.022
Watt, J., & Marcus, R. (1970). Hyperplastic mucosal changes in the rabbit colon produced by degraded carrageenin. Gastroenterology, 59(5), 760-768.
Weiner, M. L. (2016). Parameters and pitfalls to consider in the conduct of food additive research, carrageenan as a case study. Food and Chemical Toxicology, 87, 31-44. https://doi.org/10.1016/j.fct.2015.11.014
Weiner, M. L., Ferguson, H. E., Thorsrud, B. A., Nelson, K. G., Blakemore, W. R., Zeigler, B., Cameron, M. J., Brant, A., Cochrane, L., Pellerin, M., & Mahadevan, B. (2015). An infant formula toxicity and toxicokinetic feeding study on carrageenan in preweaning piglets with special attention to the immune system and gastrointestinal tract. Food and Chemical Toxicology, 77, 120-131. https://doi.org/10.1016/j.fct.2014.12.022
Weiner, M. L., McKim, J. M., & Blakemore, W. R. (2017). Addendum to Weiner, M.L. (2016) parameters and pitfalls to consider in the conduct of food additive research, carrageenan as a case study. Food and Chemical Toxicology, 107, 208-214. https://doi.org/10.1016/j.fct.2017.06.022
Weiner, M. L., Nuber, D., Blakemore, W. R., Harriman, J. F., & Cohen, S. M. (2007). A 90-day dietary study on kappa carrageenan with emphasis on the gastrointestinal tract. Food and Chemical Toxicology, 45(1), 98-106. https://doi.org/10.1016/j.fct.2006.07.033
Wu, D., Chen, Y., Wang, W., Li, H., Yang, M., Ding, H., Lv, X., Lian, N., Zhao, J., & Deng, C. (2020). The role of inflammation in a rat model of chronic thromboembolic pulmonary hypertension induced by carrageenan. Annals of Translational Medicine, 8(7), 492. https://doi.org/10.21037/atm.2020.02.86
Wu, W., Zhen, Z., Niu, T., Zhu, X., Gao, Y., Yan, J., Chen, Y., Yan, X., & Chen, H. (2017). κ-Carrageenan enhances lipopolysaccharide-induced interleukin-8 secretion by stimulating the Bcl10-NF-κB pathway in HT-29 cells and aggravates C. freundii-induced inflammation in mice. Mediators of Inflammation, 2017, 1-16.
Wu, W., Zhou, J., Chen, J., Han, H., Liu, J., Niu, T., Chen, H., & Wang, F. (2020). Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation. Research Square. https://doi.org/10.21203/rs.3.rs-56671/v1
Yang, B., Bhattacharyya, S., Linhardt, R., & Tobacman, J. (2012). Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells. Biochimie, 94(6), 1309-1316. https://doi.org/10.1016/j.biochi.2012.02.031
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Lambré, C., Leblanc, J. C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., & Younes, M. (2018). Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal, 16(4), e05238. https://doi.org/10.2903/j.efsa.2018.5238
Zhao, J., Zhang, X., Liu, H., Brown, M. A., & Qiao, S. (2019). Dietary protein and gut microbiota composition and function. Current Protein & Peptide Science, 20(2), 145-154. https://doi.org/10.2174/1389203719666180514145437
Zhou, J., Wang, F., Chen, J., Yang, R., Chen, Y., Gu, D., Niu, T., Luo, Q., Yan, X., Chen, H., & Wu, W. (2021). Long-term kappa-carrageenan consumption leads to moderate metabolic disorder by blocking insulin binding. Pharmacological Research, 105417. https://doi.org/10.1016/j.phrs.2020.105417