Multi-scale approach for the prediction of atomic scale properties.


Journal

Chemical science
ISSN: 2041-6520
Titre abrégé: Chem Sci
Pays: England
ID NLM: 101545951

Informations de publication

Date de publication:
11 Dec 2020
Historique:
entrez: 24 6 2021
pubmed: 25 6 2021
medline: 25 6 2021
Statut: epublish

Résumé

Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning schemes that predict quantum mechanical observables - such as the cohesive energy, the electron density, or a variety of response properties - as a sum of atom-centred contributions, based on a short-range representation of atomic environments. One of the main shortcomings of these approaches is their inability to capture physical effects ranging from electrostatic interactions to quantum delocalization, which have a long-range nature. Here we show how to build a multi-scale scheme that combines in the same framework local and non-local information, overcoming such limitations. We show that the simplest version of such features can be put in formal correspondence with a multipole expansion of permanent electrostatics. The data-driven nature of the model construction, however, makes this simple form suitable to tackle also different types of delocalized and collective effects. We present several examples that range from molecular physics to surface science and biophysics, demonstrating the ability of this multi-scale approach to model interactions driven by electrostatics, polarization and dispersion, as well as the cooperative behavior of dielectric response functions.

Identifiants

pubmed: 34163971
doi: 10.1039/d0sc04934d
pii: d0sc04934d
pmc: PMC8179303
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2078-2090

Informations de copyright

This journal is © The Royal Society of Chemistry.

Déclaration de conflit d'intérêts

There are no conflicts to declare.

Références

Phys Rev Lett. 2012 Feb 3;108(5):058301
pubmed: 22400967
J Chem Phys. 2018 Mar 14;148(10):102320
pubmed: 29544260
J Chem Phys. 2019 Apr 21;150(15):154110
pubmed: 31005079
J Chem Theory Comput. 2009 Jun 9;5(6):1474-89
pubmed: 26609841
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1110-1115
pubmed: 30610171
J Phys Chem Lett. 2016 Jun 16;7(12):2157-63
pubmed: 27216986
Phys Rev Lett. 2018 Aug 17;121(7):075501
pubmed: 30169089
Nat Commun. 2018 Sep 24;9(1):3887
pubmed: 30250077
Phys Chem Chem Phys. 2018 Dec 5;20(47):29661-29668
pubmed: 30465679
Phys Rev Lett. 2010 Apr 2;104(13):136403
pubmed: 20481899
J Chem Theory Comput. 2019 Apr 9;15(4):2574-2586
pubmed: 30794393
Chem Sci. 2018 Jan 18;9(8):2261-2269
pubmed: 29719699
Sci Adv. 2016 Apr 08;2(4):e1501891
pubmed: 27152357
J Chem Phys. 2014 Oct 28;141(16):164703
pubmed: 25362328
ACS Cent Sci. 2019 Jan 23;5(1):57-64
pubmed: 30693325
J Chem Phys. 2020 Jun 21;152(23):234102
pubmed: 32571051
Sci Adv. 2017 Dec 13;3(12):e1701816
pubmed: 29242828
J Chem Phys. 2018 Jun 28;148(24):241732
pubmed: 29960365
J Chem Theory Comput. 2020 Aug 11;16(8):5253-5263
pubmed: 32644791
J Chem Theory Comput. 2019 Feb 12;15(2):906-915
pubmed: 30605342
Nat Commun. 2017 Oct 11;8(1):872
pubmed: 29021555
Phys Rev Lett. 2012 Mar 16;108(11):115701
pubmed: 22540486
Nat Commun. 2018 Oct 29;9(1):4501
pubmed: 30374021
J Chem Phys. 2020 Sep 28;153(12):121101
pubmed: 33003734
J Chem Phys. 2020 Jul 14;153(2):024113
pubmed: 32668949
J Chem Phys. 2020 Aug 28;153(8):084109
pubmed: 32872889
Phys Rev Lett. 2012 Jun 22;108(25):253002
pubmed: 23004593
Phys Rev Lett. 2007 Apr 6;98(14):146401
pubmed: 17501293
J Chem Phys. 2005 Feb 1;122(5):54101
pubmed: 15740304
Phys Chem Chem Phys. 2011 Oct 28;13(40):17930-55
pubmed: 21915403
Phys Rev Lett. 1992 Dec 14;69(24):3547-3550
pubmed: 10046849
Phys Rev Lett. 2018 Jan 19;120(3):036002
pubmed: 29400528
Phys Rev Lett. 2020 Oct 16;125(16):166001
pubmed: 33124874
J Chem Phys. 2017 Oct 28;147(16):161727
pubmed: 29096505
J Chem Phys. 2018 Jun 28;148(24):241717
pubmed: 29960351
J Chem Theory Comput. 2020 Aug 11;16(8):5139-5149
pubmed: 32567854
J Chem Phys. 2016 Oct 28;145(16):161102
pubmed: 27802646
J Phys Chem Lett. 2013 Jan 17;4(2):264-8
pubmed: 26283432
Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080
pubmed: 10003746
J Chem Theory Comput. 2015 Jul 14;11(7):3225-33
pubmed: 26575759
Nat Chem. 2020 Oct;12(10):891-897
pubmed: 32968231
J Chem Phys. 2018 Jun 28;148(24):241722
pubmed: 29960322
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11635-8
pubmed: 16087868
J Chem Phys. 2011 Feb 21;134(7):074106
pubmed: 21341827
Phys Rev Lett. 2009 Feb 20;102(7):073005
pubmed: 19257665
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8368-73
pubmed: 27402761
Phys Rev Lett. 2019 Nov 8;123(19):195501
pubmed: 31765198
J Chem Theory Comput. 2018 Sep 11;14(9):4772-4779
pubmed: 30040892
Phys Rev Lett. 1996 Apr 22;76(17):3168-3171
pubmed: 10060892
Science. 2016 Mar 11;351(6278):1171-6
pubmed: 26965622
J Chem Phys. 2014 Aug 28;141(8):084504
pubmed: 25173018
J Chem Phys. 2019 Nov 28;151(20):204105
pubmed: 31779318
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3401-3406
pubmed: 30733292
J Chem Phys. 2018 Jun 28;148(24):241706
pubmed: 29960330
Phys Rev Lett. 2014 Aug 1;113(5):055701
pubmed: 25126928
J Chem Theory Comput. 2018 Sep 11;14(9):4687-4698
pubmed: 30064217
Phys Rev Lett. 2018 Apr 6;120(14):143001
pubmed: 29694129
J Phys Chem Lett. 2017 Apr 6;8(7):1496-1502
pubmed: 28267335
J Chem Theory Comput. 2015 May 12;11(5):2087-96
pubmed: 26574412
Phys Rev Lett. 1991 Mar 18;66(11):1438-1441
pubmed: 10043209
Phys Chem Chem Phys. 2015 Apr 7;17(13):8356-71
pubmed: 25436835
J Phys Chem Lett. 2018 Apr 19;9(8):1985-1989
pubmed: 29543464
J Chem Inf Model. 2018 Mar 26;58(3):579-590
pubmed: 29461814
Phys Chem Chem Phys. 2020 May 20;22(19):10480-10489
pubmed: 31907506

Auteurs

Andrea Grisafi (A)

Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland michele.ceriotti@epfl.ch.

Jigyasa Nigam (J)

Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland michele.ceriotti@epfl.ch.
National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland.
Indian Institute of Space Science and Technology Thiruvananthapuram 695547 India.

Michele Ceriotti (M)

Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland michele.ceriotti@epfl.ch.
National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland.

Classifications MeSH