An Overview of the Computational Models Dealing with the Regulatory ceRNA Mechanism and ceRNA Deregulation in Cancer.
Computational Biology
/ methods
Databases, Factual
Databases, Genetic
Feedback, Physiological
Gene Expression Regulation, Neoplastic
/ genetics
Gene Regulatory Networks
/ genetics
Humans
MicroRNAs
/ genetics
Models, Theoretical
Multivariate Analysis
Neoplasms
/ genetics
Regulatory Sequences, Ribonucleic Acid
/ genetics
Cancer
Competing endogenous RNA
Network
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
24
6
2021
pubmed:
25
6
2021
medline:
13
8
2021
Statut:
ppublish
Résumé
Pools of RNA molecules can act as competing endogenous RNAs (ceRNAs) and indirectly alter their expression levels by competitively binding shared microRNAs. This ceRNA cross talk yields an additional posttranscriptional regulatory layer, which plays key roles in both physiological and pathological processes. MicroRNAs can act as decoys by binding multiple RNAs, as well as RNAs can act as ceRNAs by competing for binding multiple microRNAs, leading to many cross talk interactions that could favor significant large-scale effects in spite of the weakness of single interactions. Identifying and studying these extended ceRNA interaction networks could provide a global view of the fine-tuning gene regulation in a wide range of biological processes and tumor progressions. In this chapter, we review current progress of predicting ceRNA cross talk, by summarizing the most up-to-date databases, which collect computationally predicted and/or experimentally validated miRNA-target and ceRNA-ceRNA interactions, as well as the widespread computational methods for discovering and modeling possible evidences of ceRNA-ceRNA interaction networks. These methods can be grouped in two categories: statistics-based methods exploit multivariate analysis to build ceRNA networks, by considering the miRNA expression levels when evaluating miRNA sponging relationships; mathematical methods build deterministic or stochastic models to analyze and predict the behavior of ceRNA cross talk.
Identifiants
pubmed: 34165714
doi: 10.1007/978-1-0716-1503-4_10
doi:
Substances chimiques
MicroRNAs
0
Regulatory Sequences, Ribonucleic Acid
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
149-164Références
Costa FF (2008) Non-coding RNAs, epigenetics and complexity. Gene 410:9–17. https://doi.org/10.1016/j.gene.2007.12.008
doi: 10.1016/j.gene.2007.12.008
pubmed: 18226475
Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108
doi: 10.1101/gr.082701.108
pubmed: 18955434
pmcid: 18955434
Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038. https://doi.org/10.1038/nature09144
doi: 10.1038/nature09144
pubmed: 20577206
pmcid: 3206313
Gu S, Jin L, Zhang F et al (2009) Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16:144–150. https://doi.org/10.1038/nsmb.1552
doi: 10.1038/nsmb.1552
pubmed: 19182800
pmcid: 2713750
Mukherji S, Ebert MS, Zheng GXY et al (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859. https://doi.org/10.1038/ng.905
doi: 10.1038/ng.905
pubmed: 21857679
pmcid: 3163764
Yoon J-H, Abdelmohsen K, Srikantan S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. https://doi.org/10.1016/j.molcel.2012.06.027
doi: 10.1016/j.molcel.2012.06.027
pubmed: 22841487
pmcid: 3509343
Wang J, Liu X, Wu H et al (2010) CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38:5366–5383
doi: 10.1093/nar/gkq285
Sumazin P, Yang X, Chiu H-S et al (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147:370–381. https://doi.org/10.1016/j.cell.2011.09.041
doi: 10.1016/j.cell.2011.09.041
pubmed: 22000015
pmcid: 3214599
Tay Y, Kats L, Salmena L et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147:344–357
doi: 10.1016/j.cell.2011.09.029
Vitiello M, Evangelista M, Zhang Y et al (2020) PTENP1 is a ceRNA for PTEN: it’s CRISPR clear. J Hematol Oncol 13(73). https://doi.org/10.1186/s13045-020-00894-2
Conte F, Fiscon G, Chiara M et al (2017) Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer. PLoS One 12. https://doi.org/10.1371/journal.pone.0171661
Yang L, Peng X, Jin H, Liu J (2019) Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene 697:94–102. https://doi.org/10.1016/j.gene.2019.02.036
doi: 10.1016/j.gene.2019.02.036
pubmed: 30794914
Colombo T, Farina L, Macino G, Paci P (2015) PVT1: a rising star among oncogenic long noncoding RNAs. Biomed Res Int 2015:304208. https://doi.org/10.1155/2015/304208
doi: 10.1155/2015/304208
pubmed: 25883951
pmcid: 4391155
Xue W, Chen J, Liu X et al (2018) PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p. Biochim Biophys Acta (BBA) Mol Basis Dis 1864:1783–1794. https://doi.org/10.1016/j.bbadis.2018.02.022
doi: 10.1016/j.bbadis.2018.02.022
The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1368-y . Accessed 24 Feb 2020
Paci P, Colombo T, Farina L (2014) Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 8:83. https://doi.org/10.1186/1752-0509-8-83
doi: 10.1186/1752-0509-8-83
pubmed: 25033876
pmcid: 4113672
Tay FC, Lim JK, Zhu H et al (2015) Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev 81:117–127. https://doi.org/10.1016/j.addr.2014.05.010
doi: 10.1016/j.addr.2014.05.010
pubmed: 24859534
Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283
doi: 10.1038/nrg.2016.20
Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005
doi: 10.7554/eLife.05005
Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152. https://doi.org/10.1093/nar/gku1104
doi: 10.1093/nar/gku1104
pubmed: 25378301
Liu W, Wang X (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20(18). https://doi.org/10.1186/s13059-019-1629-z
Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res 46:D239–D245. https://doi.org/10.1093/nar/gkx1141
doi: 10.1093/nar/gkx1141
pubmed: 29156006
Huang H-Y, Lin Y-C-D, Li J et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48:D148–D154. https://doi.org/10.1093/nar/gkz896
doi: 10.1093/nar/gkz896
pubmed: 31647101
Paraskevopoulou MD, Vlachos IS, Karagkouni D et al (2016) DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 44:D231–D238. https://doi.org/10.1093/nar/gkv1270
doi: 10.1093/nar/gkv1270
pubmed: 26612864
Sticht C, Torre CDL, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13:e0206239. https://doi.org/10.1371/journal.pone.0206239
doi: 10.1371/journal.pone.0206239
pubmed: 30335862
pmcid: 6193719
MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics 20(1):545
Sarver AL, Subramanian S (2012) Competing endogenous RNA database. Bioinformation 8:731–733
doi: 10.6026/97320630008731
Das S, Ghosal S, Sen R, Chakrabarti J (2014) ln Ce DB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS One 9:e98965
doi: 10.1371/journal.pone.0098965
Furió-Tarí P, Tarazona S, Gabaldón T et al (2016) spongeScan: a web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 44:W176–W180. https://doi.org/10.1093/nar/gkw443
doi: 10.1093/nar/gkw443
pubmed: 27198221
pmcid: 4987953
Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28:2062–2063. https://doi.org/10.1093/bioinformatics/bts344
doi: 10.1093/bioinformatics/bts344
pubmed: 22718787
pmcid: 3400968
Wang P, Zhi H, Zhang Y et al (2015) MiRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs database 2015. https://doi.org/10.1093/database/bav098
Wang P, Li X, Gao Y et al (2019) LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low- and high-throughput experiments. Nucleic Acids Res 47:D121–D127. https://doi.org/10.1093/nar/gky1144
doi: 10.1093/nar/gky1144
pubmed: 30476305
Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. https://doi.org/10.1093/nar/gkq1056
doi: 10.1093/nar/gkq1056
pubmed: 21037263
Li J-H, Liu S, Zhou H et al (2013) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2013:gkt1248
Le TD, Zhang J, Liu L, Li J (2016) Computational methods for identifying miRNA sponge interactions. Brief Bioinform 2016:bbw042
doi: 10.1093/bib/bbw042
Li Y, Jin X, Wang Z et al (2019) Systematic review of computational methods for identifying miRNA-mediated RNA-RNA crosstalk. Brief Bioinform 20:1193–1204. https://doi.org/10.1093/bib/bbx137
doi: 10.1093/bib/bbx137
pubmed: 29077860
Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105. https://doi.org/10.1002/bies.10385
doi: 10.1002/bies.10385
pubmed: 14696046
Tomczak K, Czerwinska P, Wiznerowicz M, others (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol Pozn 19:A68–A77
pubmed: 25691825
pmcid: 4322527
Zhang Y, Xu Y, Feng L et al (2016) Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 7:64148–64167. https://doi.org/10.18632/oncotarget.11637
doi: 10.18632/oncotarget.11637
pubmed: 27580177
pmcid: 5325432
Do D, Bozdag S (2018) Cancerin: a computational pipeline to infer cancer-associated ceRNA interaction networks. PLoS Comput Biol 14:e1006318. https://doi.org/10.1371/journal.pcbi.1006318
doi: 10.1371/journal.pcbi.1006318
pubmed: 30011266
pmcid: 6072113
List M, Dehghani Amirabad A, Kostka D, Schulz MH (2019) Large-scale inference of competing endogenous RNA networks with sparse partial correlation. Bioinforma Oxf Engl 35:i596–i604. https://doi.org/10.1093/bioinformatics/btz314
doi: 10.1093/bioinformatics/btz314
Wang J-B, Liu F-H, Chen J-H et al (2017) Identifying survival-associated modules from the dysregulated triplet network in glioblastoma multiforme. J Cancer Res Clin Oncol 143:661–671. https://doi.org/10.1007/s00432-016-2332-z
doi: 10.1007/s00432-016-2332-z
pubmed: 28168356
Sardina DS, Alaimo S, Ferro A et al (2017) A novel computational method for inferring competing endogenous interactions. Brief Bioinform 18:1071–1081. https://doi.org/10.1093/bib/bbw084
doi: 10.1093/bib/bbw084
pubmed: 27677959
Zhang J, Le TD, Liu L, Li J (2017) Identifying miRNA sponge modules using biclustering and regulatory scores. BMC Bioinformatics 18(44). https://doi.org/10.1186/s12859-017-1467-5
Tong Y, Ru B, Zhang J (2018) miRNACancerMAP: an integrative web server inferring miRNA regulation network for cancer. Bioinformatics 34:3211–3213. https://doi.org/10.1093/bioinformatics/bty320
doi: 10.1093/bioinformatics/bty320
pubmed: 29897412
Zhang J, Liu L, Xu T et al (2019) miRspongeR: an R/bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules. BMC Bioinformatics 20:235. https://doi.org/10.1186/s12859-019-2861-y
doi: 10.1186/s12859-019-2861-y
pubmed: 31077152
pmcid: 6509829
Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213
doi: 10.1016/j.bpj.2013.01.012
Ala U, Karreth FA, Bosia C et al (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci 110:7154–7159
doi: 10.1073/pnas.1222509110
Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8:e66609
doi: 10.1371/journal.pone.0066609
Chiu H-S, Martínez MR, Komissarova EV et al (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res 46:4354–4369. https://doi.org/10.1093/nar/gky286
doi: 10.1093/nar/gky286
pubmed: 29684207
pmcid: 5961349
Miotto M, Marinari E, De Martino A (2019) Competing endogenous RNA crosstalk at system level. PLoS Comput Biol 15:e1007474. https://doi.org/10.1371/journal.pcbi.1007474
doi: 10.1371/journal.pcbi.1007474
pubmed: 31675359
pmcid: 6853376
Tibshirani: the lasso problem and uniqueness