[Rift Valley fever virus and the amazing NSs protein].
Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs.
Journal
Medecine sciences : M/S
ISSN: 1958-5381
Titre abrégé: Med Sci (Paris)
Pays: France
ID NLM: 8710980
Informations de publication
Date de publication:
Historique:
entrez:
28
6
2021
pubmed:
29
6
2021
medline:
16
12
2021
Statut:
ppublish
Résumé
Rift Valley Fever Virus (RVFV) is an emerging zoonotic pathogen transmitted to humans and livestock through mosquito bites, which was first isolated in Kenya in 1930. The virus is classified by the WHO among the pathogens for which there is an urgent need to develop research, diagnostics, and therapies. However, the efforts developed to control the virus remain limited, and the virus is not well characterized. In this article, we will introduce RVFV and then focus on its virulence factor, the nonstructural protein NSs. We will mainly discuss the ability of this viral protein to form amyloid-like fibrils and its implication in the neurotoxicity associated with RVFV infection. Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs. Le virus de la fièvre de la vallée du Rift (VFVR) est un agent pathogène transmis à l’homme et au bétail par la piqûre de moustiques. Ce virus, découvert au Kenya en 1930, est considéré par l’Organisation mondiale de la santé comme présentant un risque important de provoquer de vastes épidémies. Les moyens dédiés à la lutte contre le VFVR restent toutefois particulièrement limités et le virus est mal connu. Dans cette Synthèse, nous nous attacherons à présenter ce virus avant de nous intéresser plus spécifiquement à son facteur de virulence, la protéine NSs. Nous discuterons la capacité de cette protéine virale à former des fibrilles de type amyloïde et son implication dans la neurotoxicité du virus chez les animaux infectés.
Autres résumés
Type: Publisher
(fre)
Le virus de la fièvre de la vallée du Rift et son étonnante protéine NSs.
Identifiants
pubmed: 34180819
doi: 10.1051/medsci/2021090
pii: msc200344
doi:
Substances chimiques
Viral Nonstructural Proteins
0
Virulence Factors
0
Types de publication
Journal Article
Langues
fre
Sous-ensembles de citation
IM
Pagination
601-608Subventions
Organisme : Deutsche Forschungsgemeinschaft (DFG)
ID : LO-2338/1
Organisme : CellNetworks
ID : Research group funds
Organisme : IDEX Université de Lyon
ID : Impulsion 2020
Organisme : Fondation pour l'Université de Lyon (FINOVI)
ID : AOP14
Organisme : INRAE
ID : Starter funds
Informations de copyright
© 2021 médecine/sciences – Inserm.
Références
Daubney R, Hudson JR, Garnham PC. Enzootic hepatitis or Rift Valley fever. an undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol 1931 ; 34 : 545–579.
Wright D, Kortekaas J, Bowden TA, Warimwe GM. Rift Valley fever: biology and epidemiology. J Gen Virol 2019 ; 100 : 1187–1199.
Lumley S, Horton DL, Hernandez-Triana LLM, et al. Rift Valley fever virus: strategies for maintenance, survival and vertical transmission in mosquitoes. J Gen Virol 2017 ; 98 : 875–887.
Peyre M, Chevalier V, Abdo-Salem S, et al. A systematic scoping study of the socio-economic impact of Rift Valley fever: research gaps and needs. Zoonoses Public Health 2015 ; 62 : 309–325.
Linthicum KJ, Britch SC, Anyamba A. Rift Valley fever: an emerging mosquito-borne disease. Annu Rev Entomol 2016 ; 61 : 395–415.
Leger P, Nachman E, Richter K, et al. NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat Commun 2020; 11 : 3281.
Freiberg AN, Sherman MB, Morais MC, et al. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 2008 ; 82 : 10341–10348.
Léger P, Lozach PY. Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virol 2015 ; 10 : 859–881.
Wuerth JD, Weber F. Phleboviruses and the type I interferon response. Viruses 2016 ; 8 : 174.
De Boer SM, Kortekaas J, de Haan CA, et al. Heparan sulfate facilitates Rift Valley fever virus entry into the cell. J Virol 2012 ; 86 : 13767–13771.
Riblett AM, Blomen VA, Jae LT, et al. A haploid genetic screen identifies heparan sulfate proteoglycans supporting Rift Valley fever virus infection. J Virol 2016 ; 90 : 1414–1423.
Leger P, Tetard M, Youness B, et al. Differential use of the C-type lectins L-SIGN and DC-SIGN for phlebovirus endocytosis. Traffic 2016 ; 17 : 639–656.
Lozach PY, Kuhbacher A, Meier R, et al. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 2011 ; 10 : 75–88.
Meier R, Helenius A, Lozach PY. DC-SIGN, un récepteur des phlébovirus : dynamique des interactions virus-récepteur. Med Sci (Paris) 2012 ; 28 : 16–18.
de Boer SM, Kortekaas J, Spel L, et al. Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. J Virol 2012 ; 86 : 13642–13652.
Uckeley ZM, Koch J, Tischler ND, et al. Cell biology of phlebovirus entry. Virologie (Montrouge) 2019 ; 23 : 176–187.
Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early bunyavirus-host cell interactions. Viruses 2016 ; 8 : 143.
Lozach PY, Mancini R, Bitto D, et al. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 2010 ; 7 : 488–499.
Wu Y, Zhu Y, Gao F, et al. Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci USA 2017 ; 114 : E7564–E7573.
Dessau M, Modis Y. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci USA 2013 ; 110 : 1696–1701.
Won S, Ikegami T, Peters CJ, Makino S. NSm and 78-kilodalton proteins of Rift Valley fever virus are nonessential for viral replication in cell culture. J Virol 2006 ; 80 : 8274–8278.
Kreher F, Tamietti C, Gommet C, et al. The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts. Emerg Microbes Infect 2014 ; 3 : e71.
Hornak KE, Lanchy JM, Lodmell JS. RNA Encapsidation and packaging in the phleboviruses. Viruses 2016 ; 8 : 194.
Uckeley ZM, Moeller R, Kuhn LI, et al. Quantitative proteomics of Uukuniemi virus-host cell interactions reveals gbf1 as proviral host factor for phleboviruses. Mol Cell Proteomics 2019 ; 18 : 2401–2417.
Allen ER, Krumm SA, Raghwani J, et al. A Protective monoclonal antibody targets a site of vulnerability on the surface of Rift Valley fever virus. Cell Rep 2018 ; 25 : 3750–8 e4.
Terasaki K, Makino S. Interplay between the virus and host in Rift Valley fever pathogenesis. J Innate Immun 2015 ; 7 : 450–458.
Barski M, Brennan B, Miller OK, et al. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments. eLife 2017; 6 : e29236.
Cyr N, de la Fuente C, Lecoq L, et al. A OmegaXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence. Proc Natl Acad Sci USA 2015 ; 112 : 6021–6026.
Lau S, Weber F. Nuclear pore protein Nup98 is involved in replication of Rift Valley fever virus and nuclear import of virulence factor NSs. J Gen Virol 2020; 101 : 712–6.
Copeland AM, Van Deusen NM, Schmaljohn CS. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology 2015 ; 486 : 88–93.
Bamia A, Marcato V, Boissiere M, et al. The NSs protein encoded by the virulent strain of Rift Valley fever virus targets the expression of Abl2 and the actin cytoskeleton of the host, affecting cell mobility, cell shape, and cell-cell adhesion. J Virol 2020; 95 : e01768–20.
Bouloy M, Janzen C, Vialat P, et al. Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J Virol 2001 ; 75 : 1371–1377.
Swanepoel R, Blackburn NK. Demonstration of nuclear immunofluorescence in Rift Valley fever infected cells. J Gen Virol 1977 ; 34 : 557–561.
Benferhat R, Josse T, Albaud B, et al. Large-scale chromatin immunoprecipitation with promoter sequence microarray analysis of the interaction of the NSs protein of Rift Valley fever virus with regulatory DNA regions of the host genome. J Virol 2012 ; 86 : 11333–11344.
Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014 ; 15 : 384–396.
Grateau G, Verine J, Delpech M, Ries M. Les amyloses, un modèle de maladie du repliement des protéines. Med Sci (Paris) 2005 ; 21 : 627–633.
Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016 ; 539 : 217–226.
Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010 ; 1804 : 1405–1412.
Monteiro GER, Jansen van Vuren P, Wichgers Schreur PJ, et al. Mutation of adjacent cysteine residues in the NSs protein of Rift Valley fever virus results in loss of virulence in mice. Virus Res 2018 ; 249 : 31–44.
Le May N, Dubaele S, Proietti De Santis L, et al. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 2004 ; 116 : 541–550.
Le May N, Mansuroglu Z, Leger P, et al. A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog 2008 ; 4 : e13.
Ikegami T, Narayanan K, Won S, et al. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog 2009 ; 5 : e1000287.
Li S, Zhu X, Guan Z, et al. NSs Filament formation is important but not sufficient for RVFV virulence in vivo. Viruses 2019 ; 11 : 834.
Erickson KD, Bouchet-Marquis C, Heiser K, et al. Virion assembly factories in the nucleus of polyomavirus-infected cells. PLoS Pathog 2012 ; 8 : e1002630.
McIntosh PB, Martin SR, Jackson DJ, et al. Structural analysis reveals an amyloid form of the human papillomavirus type 16 E1–E4 protein and provides a molecular basis for its accumulation. J Virol 2008 ; 82 : 8196–8203.
Pham CL, Shanmugam N, Strange M, et al. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies. EMBO Rep 2019 ; 20 : e46518.