A Minireview on Temperature Dependent Protein Conformational Sampling.

Biphasic transition Protein conformational sampling Protein structure and function

Journal

The protein journal
ISSN: 1875-8355
Titre abrégé: Protein J
Pays: Netherlands
ID NLM: 101212092

Informations de publication

Date de publication:
08 2021
Historique:
accepted: 19 06 2021
pubmed: 29 6 2021
medline: 25 12 2021
entrez: 28 6 2021
Statut: ppublish

Résumé

In this minireview we discuss the role of the more subtle conformational change-protein conformational sampling and connect it to the classic relationship of protein structure and function. The theory of pre-existing functional states of protein are discussed in context of alternate protein conformational sampling. Last, we discuss how temperature, ligand binding and mutations affect the protein conformational sampling mode which is linked to the protein function regulation. The review includes several protein systems that showed temperature dependent protein conformational sampling. We also specifically included two enzyme systems, thermophilic alcohol dehydrogenase (ht-ADH) and thermolysin which we previously studied when discussing temperature dependent protein conformational sampling.

Identifiants

pubmed: 34181188
doi: 10.1007/s10930-021-10012-x
pii: 10.1007/s10930-021-10012-x
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

545-553

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295(5559):1520–1523. https://doi.org/10.1126/science.1066176
doi: 10.1126/science.1066176 pubmed: 11859194 pmcid: 11859194
Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A Hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–916
doi: 10.1038/nature06407
Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E et al (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450(7171):838–844
doi: 10.1038/nature06410
Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP (2004) Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Proc Natl Acad Sci 101(26):9556–9561
doi: 10.1073/pnas.0403337101
Liang ZX, Tsigos I, Lee T, Bouriotis V, Resing KA, Ahn NG, Klinman JP (2004) Evidence for increased local flexibility in psychrophilic alcohol dehydrogenase relative to its thermophilic homologue. Biochemistry 43(46):14676–14683
doi: 10.1021/bi049004x
Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D (2004) Linkage between Dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nat Struct Mol Biol 11(10):945–949
doi: 10.1038/nsmb821
Tilton RF, Dewan JC, Petsko GA (1992) Effects of temperature on protein structure and dynamics: X-Ray crystallographic studies of the protein Ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31(9):2469–2481
doi: 10.1021/bi00124a006
Tilton RF, Dewan JC, Gregory A, Petsko A (1992) Effects of temperature on protein structure and dynamics: X-Ray crystallographic studies of the protein Ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31(9):2469–2481. https://doi.org/10.1021/bi00124a006
doi: 10.1021/bi00124a006 pubmed: 1547232 pmcid: 1547232
Závodszky P, Kardos J, Svingor Á, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95(13):7406–7411. https://doi.org/10.1073/pnas.95.13.7406
doi: 10.1073/pnas.95.13.7406 pubmed: 9636162 pmcid: 9636162
Liu Y-H, Konermann L (2008) Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry. Biochemistry 47(24):6342–6351. https://doi.org/10.1021/bi800463q
doi: 10.1021/bi800463q pubmed: 18494500 pmcid: 18494500
Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. https://doi.org/10.1038/nchembio.232
doi: 10.1038/nchembio.232 pubmed: 19841628 pmcid: 19841628
Meadows Corey W, Ryan Ou, Klinman Judith P (2014) Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis. J Phys Chem B. https://doi.org/10.1021/jp500825x
doi: 10.1021/jp500825x pubmed: 24892947 pmcid: 24892947
Axe Jennifer M, O’Rourke Kathleen F, Kerstetter Nicole E, Yezdimer Eric M, Chan Yan M, Chasin Alexander, Boehr David D (2015) Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase. Protein Sci 24:484–94. https://doi.org/10.1002/pro.2598
doi: 10.1002/pro.2598 pubmed: 25377949 pmcid: 25377949
Axe JM, Yezdimer EM, ’Rourke KFO, Kerstetter NE, You W, Chang C-EA, Boehr DD et al (2014) Amino acid networks in a 8 barrel enzyme change during catalytic turnover. J. Am. Chem. Soc. 136:6818–21. https://doi.org/10.1021/ja501602t
doi: 10.1021/ja501602t pubmed: 24766576 pmcid: 24766576
de Kreij A, Van Den Burg B, Venema G, Vriend G, Eijsink VGH, Nielsen JE (2002) The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease. J Biol Chem 277(18):15432–15438. https://doi.org/10.1074/jbc.M200807200
doi: 10.1074/jbc.M200807200 pubmed: 11859085 pmcid: 11859085
Doshi U, Holliday MJ, Eisenmesser EZ, Hamelberg D (2016) Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proc Natl Acad Sci USA 113(17):4735–4740. https://doi.org/10.1073/pnas.1523573113
doi: 10.1073/pnas.1523573113 pubmed: 27071107 pmcid: 27071107
Palmer AG (2015) Enzyme dynamics from NMR spectroscopy. Acc Chem Res 48(2):457–465. https://doi.org/10.1021/ar500340a
doi: 10.1021/ar500340a pubmed: 25574774 pmcid: 25574774
Grebner C, Iegre J, Ulander J, Edman K, Hogner A, Tyrchan C (2016) Binding mode and induced fit predictions for prospective computational drug design. J Chem Inf Model 56(4):774–787. https://doi.org/10.1021/acs.jcim.5b00744
doi: 10.1021/acs.jcim.5b00744 pubmed: 26974351 pmcid: 26974351
Dong YW, Liao ML, Meng XL, Somero GN (2018) Structural flexibility and protein adaptation to temperature: molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc Natl Acad Sci USA 115(6):1274–1279. https://doi.org/10.1073/pnas.1718910115
doi: 10.1073/pnas.1718910115 pubmed: 29358381 pmcid: 29358381
Ollikainen N, Smith CA, Fraser JS, Kortemme T (2013) Methods in enzymology: " flexible backbone sampling methods to model and design protein alternative conformations &quot. Methods Enzymol. https://doi.org/10.1016/B978-0-12-394292-0.00004-7
doi: 10.1016/B978-0-12-394292-0.00004-7 pubmed: 23422426 pmcid: 23422426
Wall ME, Van Benschoten AH, Sauter NK, Adams PD, Fraser JS, Terwilliger TC (2014) Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-Ray scattering. Proc Natl Acad Sci USA 111(50):17887–17892. https://doi.org/10.1073/pnas.1416744111
doi: 10.1073/pnas.1416744111 pubmed: 25453071 pmcid: 25453071
Heilmann N, Wolf M, Kozlowska M, Sedghamiz E, Setzler J, Brieg M, Wenzel W (2020) Sampling of the conformational landscape of small proteins with Monte Carlo methods. Sci Rep 10(1):1–13. https://doi.org/10.1038/s41598-020-75239-7
doi: 10.1038/s41598-020-75239-7
Campbell EC, Correy GJ, Mabbitt PD, Buckle AM, Tokiriki N, Jackson CJ (2018) Laboratory evolution of protein conformational dynamics. Curr Opin Struct Biol 50:49–57. https://doi.org/10.1016/j.sbi.2017.09.005
doi: 10.1016/j.sbi.2017.09.005 pubmed: 29120734 pmcid: 29120734
Campbell E, Kaltenbach M, Correy GJ, Carr PD, Porebski BT, Livingstone EK, Afriat-Jurnou L et al (2016) The role of protein dynamics in the evolution of new enzyme function. Nat Chem Biol 12(11):944–950. https://doi.org/10.1038/nchembio.2175
doi: 10.1038/nchembio.2175 pubmed: 27618189 pmcid: 27618189
Klinman JP, Offenbacher AR, Shenshen Hu (2017) Origins of enzyme catalysis: experimental findings for C-H activation, new models, and their relevance to prevailing theoretical constructs. J Am Chem Soc 139(51):18409–18427. https://doi.org/10.1021/jacs.7b08418
doi: 10.1021/jacs.7b08418 pubmed: 29244501 pmcid: 29244501
Katava M, Stirnemann G, Zanatta M, Capaccioli S, Maria Pachetti KL, Ngai FS, Paciaroni A (2017) Critical structural fluctuations of proteins upon thermal unfolding challenge the lindemann criterion. Proc Natl Acad Sci USA 114(35):9361–9366. https://doi.org/10.1073/pnas.1707357114
doi: 10.1073/pnas.1707357114 pubmed: 28808004 pmcid: 28808004
Norn C, Wicky BIM, Juergens D, Liu S, Kim D, Tischer D, Koepnick B et al (2021) Protein sequence design by conformational landscape optimization. Proc Natl Acad Sci USA 118(11):1–7. https://doi.org/10.1073/PNAS.2017228118
doi: 10.1073/PNAS.2017228118
Davey JA, Damry AM, Goto NK, Chica RA (2017) Rational design of proteins that exchange on functional timescales. Nat Chem Biol 13(12):1280–1285. https://doi.org/10.1038/nchembio.2503
doi: 10.1038/nchembio.2503 pubmed: 29058725 pmcid: 29058725
Oyeyemi OA, Sours KM, Lee T, Resing KA, Ahn NG, Klinman JP (2010) Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency. Proc Natl Acad Sci 107(22):10074–79. https://doi.org/10.1073/pnas.1003678107
doi: 10.1073/pnas.1003678107 pubmed: 20534574 pmcid: 20534574
Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease a loses function below the dynamical transition at 220 K. Nature 357(6377):423–424
doi: 10.1038/357423a0
Dong M, Lauro ML, Koblish TJ, Bahnson BJ (2020) Conformational Sampling and kinetics changes across a non-arrhenius break point in the enzyme thermolysin. Struct Dyn 014101:1–11. https://doi.org/10.1063/1.5130582
doi: 10.1063/1.5130582
Nagel ZD, Dong M, Bahnson BJ, Klinman JP (2011) Impaired protein conformational landscapes as revealed in anomalous Arrhenius Prefactors. Proc Natl Acad Sci 108(26):10520–10525
doi: 10.1073/pnas.1104989108
Nagel ZD, Medows CW, Dong M, Bahnson BJ, Klinman JP (2012) Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures. Biochemistry 51(20):4147–4156
doi: 10.1021/bi3001352
Nagel Zachary D, Meadows Corey W, Dong Ming, Bahnson Brian J, Klinman Judith P (2012) Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures. Biochemistry. https://doi.org/10.1021/bi3001352
doi: 10.1021/bi3001352 pubmed: 22568562 pmcid: 22568562
Nocek JM, Stemp EDA, Finnegan MG, Koshy TI, Johnson MK, Margoliash E, Mauk AG, Smith IM, Hoffman BM (1991) Low-temperature, cooperative conformational transition within [Zn-Cytochrome c Peroxidase, Cytochrome c Complexes: Variation with Cytochrome]. J Am Chem Soc 113(6):6822–6831
doi: 10.1021/ja00018a017
Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Letters to Nature 337(23):754–756
doi: 10.1038/337754a0
Ostermann A, Waschipky R, Parak FG, Nienhaus GU (2000) Ligand binding and conformational motions in myoglobin. Nature 404(6774):205–208. https://doi.org/10.1038/35004622
doi: 10.1038/35004622 pubmed: 10724176 pmcid: 10724176
Kohen A, Cannio R, Bartoluccl S, Klinman JP, Bartolucci S, Klinman JP (1999) Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399(6735):496–499. https://doi.org/10.1038/20981
doi: 10.1038/20981 pubmed: 10365965 pmcid: 10365965
Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA (2003) Watching a protein as it functions with 150-Ps time-resolved x-Ray crystallography. Science 300(5627):1944–47. https://doi.org/10.1126/science.1078797
doi: 10.1126/science.1078797 pubmed: 12817148 pmcid: 12817148
Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75:519–541. https://doi.org/10.1146/annurev.biochem.75.103004.142800
doi: 10.1146/annurev.biochem.75.103004.142800 pubmed: 16756501 pmcid: 16756501
Shenshen Hu, Sharma Sudhir C, Scouras Alexander D, Soudackov Alexander V, Marcus Cody A, Carr Sharon Hammes-Schiffer, Alber Tom, Klinman Judith P (2014) Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation. J Am Chem Soc. https://doi.org/10.1021/ja502726s
doi: 10.1021/ja502726s
Keedy DA, Fraser JS, van den Bedem H (2015) Exposing hidden alternative backbone conformations in X-Ray crystallography using QFit. PLoS Comput Biol 11(10):1–22. https://doi.org/10.1371/journal.pcbi.1004507
doi: 10.1371/journal.pcbi.1004507
Keedy DA, Kenner LR, Warkentin M, Woldeyes RA, Hopkins JB, Thompson MC, Brewster AS et al (2015) Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography. Elife 4(7574):1–26. https://doi.org/10.7554/eLife.07574
doi: 10.7554/eLife.07574
Réat V, Patzelt H, Ferrand M, Pfister C, Oesterhelt D, Zaccai G (1998) Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci USA 95(9):4970–4975. https://doi.org/10.1073/pnas.95.9.4970
doi: 10.1073/pnas.95.9.4970 pubmed: 9560212 pmcid: 9560212
Zaccai Giuseppe (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science (New York, N.Y.) 288(5471):1604–7. https://doi.org/10.1126/science.288.5471.1604
doi: 10.1126/science.288.5471.1604
Petsko GA, Ringe D (1984) Fluctuations in protein structure from X-Ray diffraction. Annu Rev Biophys Bioeng. https://doi.org/10.1146/annurev.bb.13.060184.001555
doi: 10.1146/annurev.bb.13.060184.001555 pubmed: 6331286 pmcid: 6331286
Sun Z, Liu Q, Ge Qu, Feng Y, Reetz MT (2019) Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00290
doi: 10.1021/acs.chemrev.8b00290 pubmed: 31244000 pmcid: 31244000
Fraser JS, van den Bedem H, Samelson AJ, Therese Lang P, Holton JM, Echols N, Alber T (2011) Accessing protein conformational ensembles using room-temperature X-Ray crystallography. Proc Natl Acad Sci USA 108(39):16247–16252. https://doi.org/10.1073/pnas.1111325108
doi: 10.1073/pnas.1111325108 pubmed: 21918110 pmcid: 21918110
Lang PT, Ng HL, Fraser JS, Corn JE, Echols N, Sales M, Holton JM, Alber T (2010) Automated electron-density sampling reveals widespread conformational polymorphism in proteins. Protein Sci 19(7):1420–1431
doi: 10.1002/pro.423
Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (2009) Hidden alternative structures of proline isomerase essential for catalysis. Nature 462(7273):669–673
doi: 10.1038/nature08615
Kao TY, Tsai CJ, Lan YJ, Chiang YW (2017) The role of conformational heterogeneity in regulating the apoptotic activity of BAX protein. Phys Chem Chem Phys 19(14):9584–9591. https://doi.org/10.1039/c7cp00401j
doi: 10.1039/c7cp00401j pubmed: 28345702 pmcid: 28345702
Zhang XH, Bruice TC (2007) Temperature-dependent structure of the E x S complex of bacillus stearothermophilus alcohol dehydrogenase. Biochemistry 46(3):837–843
doi: 10.1021/bi062110+
Glass DC, Krishnan M, Nutt DR, Smith JC (2010) Temperature dependence of protein dynamics simulated with three different water models. J Chem Theory Comput 6(4):1390–1400. https://doi.org/10.1021/ct9006508
doi: 10.1021/ct9006508
Merkley ED, Parson WW, Daggett V (2010) Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Eng Des Sel 23(5):327–336. https://doi.org/10.1093/protein/gzp090
doi: 10.1093/protein/gzp090 pubmed: 20083491 pmcid: 20083491
Childers MC, Daggett V (2018) Validating molecular dynamics simulations against experimental observables in light of underlying conformational ensembles. J Phys Chem B 122(26):6673–6689. https://doi.org/10.1021/acs.jpcb.8b02144
doi: 10.1021/acs.jpcb.8b02144 pubmed: 29864281 pmcid: 29864281
Michetti Davide, Brandsdal Bjørn Olav, Bon Davide, Isaksen Geir Villy, Tiberti Matteo, Papaleo Elena (2017) A comparative study of cold-and warmadapted endonucleases a using sequence analyses and molecular dynamics simulations. PLoS One. https://doi.org/10.1371/journal.pone.0169586
doi: 10.1371/journal.pone.0169586 pubmed: 28192428 pmcid: 28192428
Bowman GR, Geissler PL (2014) Extensive conformational heterogeneity within protein cores. J Phys Chem B 19(24):6417–6423. https://doi.org/10.1021/jp4105823
doi: 10.1021/jp4105823
Jephthah S, Staby L, Kragelund BB, Skepö M (2019) Temperature dependence of intrinsically disordered proteins in simulations: what are we missing? J Chem Theory Comput 15(4):2672–2683. https://doi.org/10.1021/acs.jctc.8b01281
doi: 10.1021/acs.jctc.8b01281 pubmed: 30865820 pmcid: 30865820
Sang Peng, Liu Shu Qun, Yang Li Quan (2020) New insight into mechanisms of protein adaptation to high temperatures: a comparative molecular dynamics simulation study of thermophilic and mesophilic subtilisin-like serine proteases. Int J Mol Sci. https://doi.org/10.3390/ijms21093128
doi: 10.3390/ijms21093128 pubmed: 32521824 pmcid: 32521824
Adamczyk AJ, Cao J, Kamerlin SCL, Warshel A (2011) Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions. Proc Natl Acad Sci USA 108(34):14115–14120. https://doi.org/10.1073/pnas.1111252108
doi: 10.1073/pnas.1111252108 pubmed: 21831831 pmcid: 21831831
Levsh O, Chiang YC, Tung CF, Noel JP, Wang Yi, Weng JK (2016) Dynamic conformational states dictate selectivity toward the native substrate in a substrate-permissive acyltransferase. Biochemistry 55(45):6314–6326. https://doi.org/10.1021/acs.biochem.6b00887
doi: 10.1021/acs.biochem.6b00887 pubmed: 27805809 pmcid: 27805809
Jiménez-Osés G, Osuna S, Gao X, Sawaya MR, Gilson L, Collier SJ, Huisman GW, Yeates TO, Tang Yi, Houk KN (2018) The role of distant mutations and allosteric regulation on LovD active site dynamics. Physiol Behav 176(5):139–148. https://doi.org/10.1038/nchembio.1503.The
doi: 10.1038/nchembio.1503.The
Gardner JM, Biler M, Risso VA, Sanchez-Ruiz JM, Kamerlin SCL (2020) Manipulating conformational dynamics to repurpose ancient proteins for modern catalytic functions. ACS Catal 10(9):4863–4870. https://doi.org/10.1021/acscatal.0c00722
doi: 10.1021/acscatal.0c00722
Bhabha Gira, Biel Justin T, Fraser James S (2015) Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Acc Chem Res 48(2):423–30. https://doi.org/10.1021/ar5003158
doi: 10.1021/ar5003158 pubmed: 25539415 pmcid: 25539415
Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM (2016) Concurrent increases and decreases in local stability and conformational heterogeneity in Cu, Zn superoxide dismutase variants revealed by temperature-dependence of amide chemical shifts. Biochemistry 55(9):1346–1361. https://doi.org/10.1021/acs.biochem.5b01133
doi: 10.1021/acs.biochem.5b01133 pubmed: 26849066 pmcid: 26849066
van den Bedem H, Bhabha G, Yang K, Wright PE, Fraser JS (2013) Automated identification of functional dynamic contact networks from x-ray crystallography. Nat Methods 10(9):896–902. https://doi.org/10.1038/nmeth.2592
doi: 10.1038/nmeth.2592 pubmed: 23913260 pmcid: 23913260
Romero-Rivera A, Garcia-Borràs M, Osuna S (2017) Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal 7(12):8524–8532. https://doi.org/10.1021/acscatal.7b02954
doi: 10.1021/acscatal.7b02954 pubmed: 29226011 pmcid: 29226011
Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, Goldfarb D, Otting G, Jackson CJ (2020) Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nat Commun 11(1):1–32. https://doi.org/10.1038/s41467-020-19695-9
doi: 10.1038/s41467-020-19695-9
Perticaroli S, Nickels JD, Ehlers G, Mamontov E, Sokolov AP (2014) Dynamics and rigidity in an intrinsically disordered protein, β-casein. J Phys Chem B 118(26):7317–7326. https://doi.org/10.1021/jp503788r
doi: 10.1021/jp503788r pubmed: 24918971 pmcid: 24918971
Döring K, Surrey T, Nollert P, Jähnig F (1999) Effects of ligand binding on the internal dynamics of maltose-binding protein. FEBS J 266(2):477–483
Lang PT, Holton JM, Fraser JS, Alber T (2014) Protein structural ensembles are revealed by redefining X-Ray electron density noise. Proc Natl Acad Sci USA 111(1):237–242. https://doi.org/10.1073/pnas.1302823110
doi: 10.1073/pnas.1302823110 pubmed: 24363322 pmcid: 24363322
Callaway E (2020) ‘It will change everything’: deepmind’s ai makes gigantic leap in solving protein structures. Nature 588(7837):203–204. https://doi.org/10.1038/d41586-020-03348-4
doi: 10.1038/d41586-020-03348-4 pubmed: 33257889 pmcid: 33257889
Hong Nan-Sook, Petrović Dušan, Lee Richmond, Gryn’ova Ganna, Purg Miha, Saunders Jake, Bauer Paul, Carr Paul D, Lin Ching-Yeh, Mabbitt Peter D, Zhang William, Altamore Timothy, Easton Chris, Coote Michelle L, Kamerlin Shina C. L, Jackson Colin J (2018) The evolution of multiple active site configurations in a designed enzyme. Nat Commun. https://doi.org/10.1038/s41467-018-06305-y
doi: 10.1038/s41467-018-06305-y pubmed: 30523329 pmcid: 30523329

Auteurs

Ming Dong (M)

Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC, 27410, USA. mdong@ncat.edu.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH