Midterm Results Following Minimally Invasive Distal Chevron Osteotomy: Comparison With the Minimally Invasive Reverdin-Isham Osteotomy by Means of Meta-analysis.

Chevron Hallux valgus Reverdin-Isham osteotomy minimally invasive surgery review

Journal

In vivo (Athens, Greece)
ISSN: 1791-7549
Titre abrégé: In Vivo
Pays: Greece
ID NLM: 8806809

Informations de publication

Date de publication:
Historique:
received: 06 04 2021
revised: 20 04 2021
accepted: 19 05 2021
entrez: 28 6 2021
pubmed: 29 6 2021
medline: 1 7 2021
Statut: ppublish

Résumé

To date, multiple different surgical techniques have been established for hallux valgus surgery, with each technique having its unique advantages and limitations. The open distal chevron osteotomy is widely accepted, but increasing patient demands have led several minimally invasive (MIS) techniques to be described in recent years. The aim of this study was to compare outcomes after minimally invasive (MIS) distal chevron osteotomy and the minimally invasive Reverdin-Isham method. We assessed clinical and radiographic outcomes after MIS chevron osteotomy in 57 feet of 49 consecutive patients with a mean follow-up of 58.9 (range=39.0-85.4) months. Outcomes after MIS Reverdin-Isham osteotomy were analyzed by means of a systematic literature review with a minimum follow-up of 6 months. Radiographic outcomes were significantly better in the MIS chevron cohort for intermetatarsal angle (p<0.001), hallux valgus angle and distal metacarpal articular angle (p<0.05). Concerning clinical outcomes, both methods provided comparable improvement. MIS distal chevron osteotomy in mild to moderate hallux valgus deformity correction results in superior radiographic outcomes compared to the MIS Reverdin-Isham osteotomy. Sufficient correction of IMA cannot be achieved with the MIS Reverdin-Isham osteotomy.

Sections du résumé

BACKGROUND/AIM OBJECTIVE
To date, multiple different surgical techniques have been established for hallux valgus surgery, with each technique having its unique advantages and limitations. The open distal chevron osteotomy is widely accepted, but increasing patient demands have led several minimally invasive (MIS) techniques to be described in recent years. The aim of this study was to compare outcomes after minimally invasive (MIS) distal chevron osteotomy and the minimally invasive Reverdin-Isham method.
PATIENTS AND METHODS METHODS
We assessed clinical and radiographic outcomes after MIS chevron osteotomy in 57 feet of 49 consecutive patients with a mean follow-up of 58.9 (range=39.0-85.4) months. Outcomes after MIS Reverdin-Isham osteotomy were analyzed by means of a systematic literature review with a minimum follow-up of 6 months.
RESULTS RESULTS
Radiographic outcomes were significantly better in the MIS chevron cohort for intermetatarsal angle (p<0.001), hallux valgus angle and distal metacarpal articular angle (p<0.05). Concerning clinical outcomes, both methods provided comparable improvement.
CONCLUSION CONCLUSIONS
MIS distal chevron osteotomy in mild to moderate hallux valgus deformity correction results in superior radiographic outcomes compared to the MIS Reverdin-Isham osteotomy. Sufficient correction of IMA cannot be achieved with the MIS Reverdin-Isham osteotomy.

Identifiants

pubmed: 34182496
pii: 35/4/2187
doi: 10.21873/invivo.12490
pmc: PMC8286526
doi:

Types de publication

Journal Article Meta-Analysis Systematic Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

2187-2196

Informations de copyright

Copyright © 2021 International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

Références

J Bone Joint Surg Br. 1951 Aug;33-B(3):376-91
pubmed: 14861244
PLoS Med. 2009 Jul 21;6(7):e1000097
pubmed: 19621072
Orthop Traumatol Surg Res. 2010 Jun;96(4):407-16
pubmed: 20488776
Clin Podiatr Med Surg. 1991 Jan;8(1):111-36
pubmed: 2015523
Clin Ter. 2016 Nov-Dec;167(6):e150-e154
pubmed: 28051828
Orthopade. 1997 Jul;26(7):654-664
pubmed: 28246805
Clin Orthop Relat Res. 2016 Aug;474(8):1886-93
pubmed: 26872913
Foot Ankle Int. 2016 Nov;37(11):1197-1204
pubmed: 27381179
Foot Ankle Int. 2017 Aug;38(8):838-846
pubmed: 28476096
Orthop Clin North Am. 2009 Oct;40(4):505-14, ix
pubmed: 19773056
Musculoskelet Surg. 2017 Aug;101(2):167-172
pubmed: 28168637
Int Orthop. 2013 Sep;37(9):1731-5
pubmed: 23989262
J Foot Ankle Surg. 2017 May - Jun;56(3):445-452
pubmed: 28237566
Foot Ankle Clin. 2014 Jun;19(2):181-9
pubmed: 24878408
J Pediatr Surg. 2003 Dec;38(12):1739-43
pubmed: 14666456
Br Med Bull. 2011;97:149-67
pubmed: 20710024
Foot Ankle Spec. 2017 Dec;10(6):502-508
pubmed: 28068797
Foot Ankle Surg. 2016 Dec;22(4):248-253
pubmed: 27810023
ANZ J Surg. 2003 Sep;73(9):712-6
pubmed: 12956787
Orthop Traumatol Surg Res. 2013 Jun;99(4):433-9
pubmed: 23623317
Clin Orthop Relat Res. 2007 Feb;455:23-9
pubmed: 17279036
Foot Ankle Int. 2014 Dec;35(12):1262-7
pubmed: 25192724
Acta Biomed. 2014 Nov 10;85 Suppl 2:121-5
pubmed: 25409732
Foot Ankle Int. 2008 May;29(5):473-7
pubmed: 18510898
Int Orthop. 2019 Feb;43(2):343-350
pubmed: 29869014
J Bone Joint Surg Am. 2000 Oct;82(10):1373-8
pubmed: 11057464
Int Orthop. 2013 Sep;37(9):1799-803
pubmed: 23722318
Foot Ankle Int. 2011 May;32(5):S503-7
pubmed: 21733458
J Bone Joint Surg Am. 2020 May 20;102(10):873-879
pubmed: 32149929
Rev Esp Cir Ortop Traumatol. 2015 Jan-Feb;59(1):52-8
pubmed: 25284596
Int Orthop. 2014 Oct;38(10):2115-21
pubmed: 25128969
J Orthop Surg Res. 2016 Dec 5;11(1):157
pubmed: 27919259
Acta Biomed. 2014 Sep 24;85 Suppl 2:107-12
pubmed: 25409729
Foot Ankle Int. 2020 Jan;41(1):50-56
pubmed: 31522534
Foot Ankle Int. 2005 Feb;26(2):122-7
pubmed: 15737253
Clin Orthop Relat Res. 2013 Jul;471(7):2305-11
pubmed: 23494184
Musculoskelet Surg. 2019 Aug;103(2):161-166
pubmed: 30151785
Foot Ankle Int. 2009 Dec;30(12):1154-60
pubmed: 20003873
J Foot Ankle Surg. 2018 Jan - Feb;57(1):123-130
pubmed: 28870735
Br J Radiol. 1951 Jan;24(277):18-26
pubmed: 14801487
Int Orthop. 2013 Sep;37(9):1805-13
pubmed: 23820757
J Clin Orthop Trauma. 2020 May-Jun;11(3):348-356
pubmed: 32405192
Int Orthop. 2019 Mar;43(3):625-637
pubmed: 30218181
Rev Invest Clin. 2014 Jul;66 Suppl 1:S79-84
pubmed: 25264801
Foot Ankle Spec. 2013 Dec;6(6):409-16
pubmed: 24154993
Acta Ortop Mex. 2008 May-Jun;22(3):150-6
pubmed: 18826077
Eur J Orthop Surg Traumatol. 2020 Jan;30(1):163-173
pubmed: 31375999
Bone Joint J. 2013 May;95-B(5):649-56
pubmed: 23632675

Auteurs

Gerhard Kaufmann (G)

OFZ Innsbruck, Orthopedic and Foot Center Innsbruck, Innsbruck, Austria.

Daniel Weiskopf (D)

Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria.

Michael Liebensteiner (M)

Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria.

Hanno Ulmer (H)

Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria.

Matthias Braito (M)

Department of Orthopaedics and Traumatology, St. Johann in Tirol, Austria.

Franz Endstrasser (F)

Department of Orthopaedics and Traumatology, St. Johann in Tirol, Austria.

Moritz Wagner (M)

Department of Orthopaedics and Traumatology, St. Johann in Tirol, Austria.

Michael Ban (M)

Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria.

Dietmar Dammerer (D)

Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria; dietmar.dammerer@tirol-kliniken.at.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH