Pathogenic MAST3 Variants in the STK Domain Are Associated with Epilepsy.
Adolescent
Adult
Amino Acid Sequence
Animals
Child
Cohort Studies
Epilepsy
/ diagnostic imaging
Female
Follow-Up Studies
Genetic Variation
/ genetics
HEK293 Cells
Humans
Male
Mice
Mice, Inbred C57BL
Microtubule-Associated Proteins
/ biosynthesis
Protein Serine-Threonine Kinases
/ biosynthesis
Young Adult
Journal
Annals of neurology
ISSN: 1531-8249
Titre abrégé: Ann Neurol
Pays: United States
ID NLM: 7707449
Informations de publication
Date de publication:
08 2021
08 2021
Historique:
revised:
12
05
2021
received:
09
03
2021
accepted:
06
06
2021
pubmed:
30
6
2021
medline:
9
11
2021
entrez:
29
6
2021
Statut:
ppublish
Résumé
The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.
Identifiants
pubmed: 34185323
doi: 10.1002/ana.26147
pmc: PMC8324566
mid: NIHMS1719314
doi:
Substances chimiques
Microtubule-Associated Proteins
0
MAST3 protein, human
EC 2.7.11.1
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
274-284Subventions
Organisme : NHGRI NIH HHS
ID : U01 HG007690
Pays : United States
Organisme : NIH Common Fund
Organisme : Office of the NIH Director
Organisme : NIH
Organisme : NINDS NIH HHS
ID : R00 NS089858
Pays : United States
Organisme : Japan Agency for Medical Research and Development
Organisme : National Health and Medical Research Council
Organisme : NIH HHS
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007530
Pays : United States
Organisme : Office of Strategic Coordination
Organisme : Yale University
Organisme : NICHD NIH HHS
ID : P50 HD103524
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001422
Pays : United States
Organisme : March of Dimes
Informations de copyright
© 2021 American Neurological Association.
Références
J Biol Chem. 2005 Mar 11;280(10):8800-7
pubmed: 15618230
Lancet Neurol. 2018 Jan;17(1):7-8
pubmed: 29263009
Lancet. 2005 Jan 29-Feb 4;365(9457):415-6
pubmed: 15680457
J Mol Neurosci. 2020 Mar;70(3):320-327
pubmed: 31721002
J Neurosci. 2017 Mar 8;37(10):2709-2722
pubmed: 28167675
N Engl J Med. 2018 Apr 26;378(17):1646-1648
pubmed: 29694806
Epilepsia. 2017 Apr;58(4):512-521
pubmed: 28276062
Lancet. 2005 Jan 29-Feb 4;365(9457):412-5
pubmed: 15680456
Hum Mutat. 2015 Oct;36(10):928-30
pubmed: 26220891
Neuropediatrics. 2020 Dec;51(6):435-439
pubmed: 32818970
Ann Neurol. 2020 Aug;88(2):348-362
pubmed: 32515017
Lancet Neurol. 2016 Mar;15(3):304-16
pubmed: 26597089
Lancet. 2005 Jan 29-Feb 4;365(9457):410-2
pubmed: 15680455
Adv Pharmacol. 2021;90:39-65
pubmed: 33706938
Brain. 2019 Feb 1;142(2):362-375
pubmed: 30601941
Mol Cell. 2014 Jan 9;53(1):140-7
pubmed: 24374310
Neuron. 2018 Dec 19;100(6):1354-1368.e5
pubmed: 30449657
J Med Genet. 2019 Jun;56(6):396-407
pubmed: 30842224
Genet Med. 2016 Jul;18(7):696-704
pubmed: 26633542
Lancet Neurol. 2015 Dec;14(12):1219-28
pubmed: 26416172
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Neurology. 2017 Aug 29;89(9):893-899
pubmed: 28733343
Inflamm Bowel Dis. 2012 Jun;18(6):1072-80
pubmed: 21994190
Brain. 2007 Mar;130(Pt 3):843-52
pubmed: 17347258
Elife. 2017 Jun 14;6:
pubmed: 28613156
Brain Res. 2008 Feb 21;1195:12-9
pubmed: 18206861
Am J Med Genet A. 2020 Jun;182(6):1483-1490
pubmed: 32198973
Am J Hum Genet. 2019 Feb 7;104(2):357
pubmed: 30735662
Genome Res. 2017 Oct;27(10):1715-1729
pubmed: 28864458
Biochim Biophys Acta Mol Cell Res. 2019 Jan;1866(1):64-73
pubmed: 30401536