Structural mechanism of laminin recognition by integrin.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
29 06 2021
Historique:
received: 19 09 2020
accepted: 04 06 2021
entrez: 30 6 2021
pubmed: 1 7 2021
medline: 23 7 2021
Statut: epublish

Résumé

Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6β1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin β1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the β-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.

Identifiants

pubmed: 34188035
doi: 10.1038/s41467-021-24184-8
pii: 10.1038/s41467-021-24184-8
pmc: PMC8241838
doi:

Substances chimiques

Integrin alpha6 0
Integrin alpha6beta1 0
Integrin beta1 0
Laminin 0
laminin alpha5 0
laminin gamma 1 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4012

Références

Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).
pubmed: 12297042 doi: 10.1016/S0092-8674(02)00971-6
Brown, N. H. Cell-cell adhesion via the ECM: integrin genetics in fly and worm. Matrix Biol. 19, 191–201 (2000).
pubmed: 10936444 doi: 10.1016/S0945-053X(00)00064-0
Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. J. Cell Biol. 150, F89–F96 (2000).
pubmed: 10908592 doi: 10.1083/jcb.150.2.F89
Pozzi, A. & Zent, R. Extracellular matrix receptors in branched organs. Curr. Opin. Cell. Biol. 23, 547–553 (2011).
pubmed: 21561755 pmcid: 3181278 doi: 10.1016/j.ceb.2011.04.003
Danen, E. H. & Sonnenberg, A. Integrins in regulation of tissue development and function. J. Pathol. 201, 632–641 (2003).
pubmed: 14648669 doi: 10.1002/path.1472
Aumailley, M. et al. A simplified laminin nomenclature. Matrix Biol. 24, 326–332 (2005).
pubmed: 15979864 doi: 10.1016/j.matbio.2005.05.006
Yamada, M. & Sekiguchi, K. Molecular basis of laminin-integrin interactions. Curr. Top. Membr. 76, 197–229 (2015).
pubmed: 26610915 doi: 10.1016/bs.ctm.2015.07.002
Hohenester, E. Structural biology of laminins. Essays Biochem 63, 285–295 (2019).
pubmed: 31092689 pmcid: 6744579 doi: 10.1042/EBC20180075
Shibata, S. et al. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Rep. 25, 1668–1679 e1665 (2018).
pubmed: 30404017 doi: 10.1016/j.celrep.2018.10.032
Miner, J. H. & Yurchenco, P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell. Dev. Biol. 20, 255–284 (2004).
pubmed: 15473841 doi: 10.1146/annurev.cellbio.20.010403.094555
Edgar, D., Timpl, R. & Thoenen, H. The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 3, 1463–1468 (1984).
pubmed: 6745238 pmcid: 557545 doi: 10.1002/j.1460-2075.1984.tb01997.x
Takizawa, M. et al. Mechanistic basis for the recognition of laminin-511 by alpha6beta1 integrin. Sci. Adv. 3, e1701497 (2017).
pubmed: 28879238 pmcid: 5580876 doi: 10.1126/sciadv.1701497
Pulido, D., Hussain, S. A. & Hohenester, E. Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111. Structure 25, 530–535 (2017).
pubmed: 28132784 pmcid: 5343747 doi: 10.1016/j.str.2017.01.002
Nagae, M. et al. Crystal structure of alpha 5 beta 1 integrin ectodomain: Atomic details of the fibronectin receptor. J. Cell. Biol. 197, 131–140 (2012).
pubmed: 22451694 pmcid: 3317794 doi: 10.1083/jcb.201111077
Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).
pubmed: 11884718 doi: 10.1126/science.1069040
Springer, T. A., Zhu, J. & Xiao, T. Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J. Cell Biol. 182, 791–800 (2008).
pubmed: 18710925 pmcid: 2518716 doi: 10.1083/jcb.200801146
Dong, X., Hudson, N. E., Lu, C. & Springer, T. A. Structural determinants of integrin beta-subunit specificity for latent tgf-beta. Nat. Struct. Biol. 21, 1091–1096 (2014).
doi: 10.1038/nsmb.2905
Zhu, J. Q., Zhu, J. H. & Springer, T. A. Complete integrin headpiece opening in eight steps. J. Cell Biol. 201, 1053–1068 (2013).
pubmed: 23798730 pmcid: 3691460 doi: 10.1083/jcb.201212037
Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002).
pubmed: 12230977 doi: 10.1016/S0092-8674(02)00935-2
Campbell, I.D. & Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3 (2011).
Yu, Y. M. et al. Structural specializations of alpha(4)beta(7), an integrin that mediates rolling adhesion. J. Cell Biol. 196, 131–146 (2012).
pubmed: 22232704 pmcid: 3255974 doi: 10.1083/jcb.201110023
Nishida, N. et al. Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25, 583–594 (2006).
pubmed: 17045822 doi: 10.1016/j.immuni.2006.07.016
Chen, X. et al. Requirement of open headpiece conformation for activation of leukocyte integrin alphaXbeta2. Proc. Natl Acad. Sci. USA 107, 14727–14732 (2010).
pubmed: 20679211 pmcid: 2930457 doi: 10.1073/pnas.1008663107
Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).
pubmed: 15378069 pmcid: 4372090 doi: 10.1038/nature02976
Miyazaki, N., Iwasaki, K. & Takagi, J. A systematic survey of conformational states in beta1 and beta4 integrins using negative-stain electron microscopy. J. Cell Sci. 131 (2018).
Nishiuchi, R. et al. Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol. 25, 189–197 (2006).
pubmed: 16413178 doi: 10.1016/j.matbio.2005.12.001
Hemler, M. E., Crouse, C. & Sonnenberg, A. Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit on certain cell lines. J. Biol. Chem. 264, 6529–6235 (1989).
pubmed: 2649503 doi: 10.1016/S0021-9258(18)83380-4
Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).
pubmed: 18786416 pmcid: 2747473 doi: 10.1016/j.stem.2008.07.026
Yang, Z. et al. CD49f acts as an inflammation sensor to regulate differentiation, adhesion, and migration of human mesenchymal. Stem Cells Stem Cells 33, 2798–2810 (2015).
pubmed: 26013602 doi: 10.1002/stem.2063
Villa-Diaz, L. G., Kim, J. K., Laperle, A., Palecek, S. P. & Krebsbach, P. H. Inhibition of focal adhesion kinase signaling by integrin alpha6beta1 supports human pluripotent stem cell self-renewal. Stem Cells 34, 1753–1764 (2016).
pubmed: 26930028 doi: 10.1002/stem.2349
Toya, S. P. et al. Integrin alpha6beta1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells 33, 1719–1729 (2015).
pubmed: 25693840 pmcid: 4441581 doi: 10.1002/stem.1974
Miyazaki, T. et al. Laminin e8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun. 3 (2012).
Krebsbach, P. H. & Villa-Diaz, L. G. The role of integrin alpha6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev. 26, 1090–1099 (2017).
pubmed: 28494695 pmcid: 5563922 doi: 10.1089/scd.2016.0319
Zhou, Z. et al. alpha6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction. Stem Cell Res. Ther. 9, 122 (2018).
pubmed: 29720266 pmcid: 5930856 doi: 10.1186/s13287-018-0868-3
Arimori, T. et al. Fv-clasp: an artificially designed small antibody fragment with improved production compatibility, stability, and crystallizability. Structure 25, 1611–1622 e1614 (2017).
pubmed: 28919443 doi: 10.1016/j.str.2017.08.011
Xia, W. & Springer, T. A. Metal ion and ligand binding of integrin alpha5beta1. Proc. Natl Acad. Sci. USA 111, 17863–17868 (2014).
pubmed: 25475857 pmcid: 4273411 doi: 10.1073/pnas.1420645111
de Melker, A. A. & Sonnenberg, A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays 21, 499–509 (1999).
pubmed: 10402956 doi: 10.1002/(SICI)1521-1878(199906)21:6<499::AID-BIES6>3.0.CO;2-D
Luo, B. H., Strokovich, K., Walz, T., Springer, T. A. & Takagi, J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J. Biol. Chem. 279, 27466–27471 (2004).
pubmed: 15123676 doi: 10.1074/jbc.M404354200
Su, Y. et al. Relating conformation to function in integrin alpha5beta1. Proc. Natl Acad. Sci. USA. 113, E3872–E3881 (2016).
pubmed: 27317747 pmcid: 4941492 doi: 10.1073/pnas.1605074113
Luque, A. et al. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355-425) of the common beta 1 chain. J. Biol. Chem. 271, 11067–11075 (1996).
pubmed: 8626649 doi: 10.1074/jbc.271.19.11067
Takagi, J., Strokovich, K., Springer, T. A. & Walz, T. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J. 22, 4607–4615 (2003).
pubmed: 12970173 pmcid: 212714 doi: 10.1093/emboj/cdg445
Eng, E. T., Smagghe, B. J., Walz, T. & Springer, T. A. Intact alpha(IIb)beta(3) integrin is extended after activation as measured by solution x-ray scattering and electron microscopy. J. Biol. Chem. 286, 35218–35226 (2011).
pubmed: 21832081 pmcid: 3186426 doi: 10.1074/jbc.M111.275107
Dong, X. et al. Force interacts with macromolecular structure in activation of TGF-beta. Nature 542, 55–59 (2017).
pubmed: 28117447 pmcid: 5586147 doi: 10.1038/nature21035
Wang, J. et al. Atypical interactions of integrin alphaVbeta8 with pro-TGF-beta1. Proc. Natl Acad. Sci. USA 114, E4168–E4174 (2017).
pubmed: 28484027 pmcid: 5448207
Mould, A. P. et al. Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J. Biol. Chem. 278, 17028–17035 (2003).
pubmed: 12615914 doi: 10.1074/jbc.M213139200
Ido, H. et al. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins. J. Biol. Chem. 282, 11144–11154 (2007).
pubmed: 17307733 doi: 10.1074/jbc.M609402200
Nesic, D. et al. Cryo-electron microscopy structure of the alphaiibbeta3-abciximab complex. Arterioscler. Thromb. Vasc. Biol. 40, 624–637 (2020).
pubmed: 31969014 pmcid: 7047619 doi: 10.1161/ATVBAHA.119.313671
Campbell, M. G. et al. Cryo-EM reveals integrin-mediated TGF-beta activation without release from latent TGF-beta. Cell 180, 490–501 e416 (2020).
pubmed: 31955848 pmcid: 7238552 doi: 10.1016/j.cell.2019.12.030
Wang, J., Su, Y., Iacob, R. E., Engen, J. R. & Springer, T. A. General structural features that regulate integrin affinity revealed by atypical alphaVbeta8. Nat. Commun. 10, 5481 (2019).
pubmed: 31792290 pmcid: 6889490 doi: 10.1038/s41467-019-13248-5
Lin, F. Y., Zhu, J., Eng, E. T., Hudson, N. E. & Springer, T. A. beta-Subunit Binding Is Sufficient for Ligands to Open the Integrin alphaIIbbeta3 Headpiece. J. Biol. Chem. 291, 4537–4546 (2016).
pubmed: 26631735 doi: 10.1074/jbc.M115.705624
Sen, M., Yuki, K. & Springer, T. A. An internal ligand-bound, metastable state of a leukocyte integrin, alpha(X)beta(2). J. Cell Biol. 203, 629–642 (2013).
pubmed: 24385486 pmcid: 3840939 doi: 10.1083/jcb.201308083
Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunological Rev. 186, 141–163 (2002).
doi: 10.1034/j.1600-065X.2002.18613.x
Kamata, T., Tieu, K. K., Irie, A., Springer, T. A. & Takada, Y. Amino acid residues in the alpha IIb subunit that are critical for ligand binding to integrin alpha IIbbeta 3 are clustered in the beta-propeller model. J. Biol. Chem. 276, 44275–44283 (2001).
pubmed: 11557768 doi: 10.1074/jbc.M107021200
von der Mark, H. et al. Alternative splice variants of alpha 7 beta 1 integrin selectively recognize different laminin isoforms. J. Biol. Chem. 277, 6012–6016 (2002).
pubmed: 11744715 doi: 10.1074/jbc.M102188200
Delwel, G. O., Kuikman, I. & Sonnenberg, A. An alternatively spliced exon in the extracellular domain of the human alpha 6 integrin subunit—functional analysis of the alpha 6 integrin variants. Cell Adhes. Commun. 3, 143–161 (1995).
pubmed: 7583007 doi: 10.3109/15419069509081283
Taniguchi, Y., Takizawa, M., Li, S. & Sekiguchi, K. Bipartite mechanism for laminin-integrin interactions: Identification of the integrin-binding site in lg domains of the laminin alpha chain. Matrix Biol. 87, 66–76 (2020).
pubmed: 31669520 doi: 10.1016/j.matbio.2019.10.005
Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).
pubmed: 6325925 doi: 10.1038/309030a0
Kabsch, W.Xds. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441 pmcid: 3069738 doi: 10.1107/S0907444910045749
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Kato, K. et al. Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat. Commun. 10, 4929 (2019).
pubmed: 31666526 pmcid: 6821847 doi: 10.1038/s41467-019-12942-8
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7 (2018).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084 pubmed: 15264254
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).
doi: 10.1107/S0907444909042073 pubmed: 20057044
Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics “inside-out” activation of integrin a5b1. Nat. Struct. Biol. 8, 412–416 (2001).
pubmed: 11323715 doi: 10.1038/87569
Fujii, Y. et al. PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expres Purif. 95, 240–247 (2014).
doi: 10.1016/j.pep.2014.01.009

Auteurs

Takao Arimori (T)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

Naoyuki Miyazaki (N)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan.

Emiko Mihara (E)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

Mamoru Takizawa (M)

Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

Yukimasa Taniguchi (Y)

Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

Carlos Cabañas (C)

Cell-cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
Department of Immunology, Ophthalmology and Otorhinolaryngology (IOO), Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
Instituto de Investigación Sanitaria Hospital 12 Octubre (i+12), Madrid, Spain.

Kiyotoshi Sekiguchi (K)

Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.

Junichi Takagi (J)

Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan. takagi@protein.osaka-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH