Magnetic-Field-Orientation Dependent Thermal Entanglement of a Spin-1 Heisenberg Dimer: The Case Study of Dinuclear Nickel Complex with an Uniaxial Single-Ion Anisotropy.

bipartite entanglement dinuclear nickel complexes exchange and single-ion anisotropy spin-1 Heisenberg dimer

Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
05 Jun 2021
Historique:
received: 17 05 2021
revised: 02 06 2021
accepted: 02 06 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

The bipartite entanglement in pure and mixed states of a quantum spin-1 Heisenberg dimer with exchange and uniaxial single-ion anisotropies is quantified through the negativity in a presence of the external magnetic field. At zero temperature the negativity shows a marked stepwise dependence on a magnetic field with two abrupt jumps and plateaus, which can be attributed to the quantum antiferromagnetic and quantum ferrimagnetic ground states. The magnetic-field-driven phase transition between the quantum antiferromagnetic and quantum ferrimagnetic ground states manifests itself at nonzero temperatures by a local minimum of the negativity, which is followed by a peculiar field-induced rise of the negativity observable in a range of moderately strong magnetic fields. The rising temperature generally smears out abrupt jumps and plateaus of the negativity, which cannot be distinguished in the relevant dependencies above a certain temperature. It is shown that the thermal entanglement is most persistent against rising temperature at the magnetic field, for which an energy gap between a ground state and a first excited state is highest. Besides, temperature variations of the negativity of the spin-1 Heisenberg dimer with an easy-axis single-ion anisotropy may exhibit a singular point-kink, at which the negativity has discontinuity in its first derivative. The homodinuclear nickel complex [Ni2(Medpt)2(μ-ox)(H2O)2](ClO4)2·2H2O provides a suitable experimental platform of the antiferromagnetic spin-1 Heisenberg dimer, which allowed us to estimate a strength of the bipartite entanglement between two exchange-coupled Ni2+ magnetic ions on the grounds of the interaction constants reported previously from the fitting procedure of the magnetization data. It is verified that the negativity of this dinuclear compound is highly magnetic-field-orientation dependent due to presence of a relatively strong uniaxial single-ion anisotropy.

Identifiants

pubmed: 34198732
pii: molecules26113420
doi: 10.3390/molecules26113420
pmc: PMC8201236
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-18-0197

Références

Nat Chem. 2019 Apr;11(4):301-309
pubmed: 30903036
Philos Trans A Math Phys Eng Sci. 2003 Aug 15;361(1809):1655-74
pubmed: 12952679
J Am Chem Soc. 2019 Jul 24;141(29):11339-11352
pubmed: 31287678
Chem Soc Rev. 2012 Jan 21;41(2):537-46
pubmed: 21818467
Chem Soc Rev. 2011 Jun;40(6):3119-29
pubmed: 21336365
Phys Rev A. 1995 Apr;51(4):2738-2747
pubmed: 9911903
Nat Commun. 2016 Jan 08;7:10240
pubmed: 26742716
Phys Rev Lett. 1996 Aug 19;77(8):1413-1415
pubmed: 10063072
Chem Sci. 2018 Mar 7;9(13):3265-3275
pubmed: 29780458
Nat Commun. 2016 Apr 25;7:11377
pubmed: 27109358
J Am Chem Soc. 2014 Oct 8;136(40):14215-22
pubmed: 25203521
Nature. 2001 Apr 12;410(6830):789-93
pubmed: 11298441
Phys Rev Lett. 2011 Sep 9;107(11):117203
pubmed: 22026699
J Phys Condens Matter. 2021 Jul 01;33(34):
pubmed: 34111860

Auteurs

Azadeh Ghannadan (A)

Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovakia.

Jozef Strečka (J)

Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovakia.

Classifications MeSH