Influence of the Chelation Process on the Stability of Organic Trace Mineral Supplements Used in Animal Nutrition.
acidic stability
enzyme hydrolysis
mineral absorption
organic trace minerals (OTMs)
proteinates
Journal
Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614
Informations de publication
Date de publication:
10 Jun 2021
10 Jun 2021
Historique:
received:
22
04
2021
revised:
02
06
2021
accepted:
08
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
3
7
2021
Statut:
epublish
Résumé
The effect of the chelation process on the pH-dependent stability of organic trace minerals (OTMs) used as mineral supplements in animal nutrition was assessed using analytical techniques such as potentiometry, Fourier Transform Infrared Spectroscopy (FTIRS) and amino acid profiling. The aim was to understand the influence and relative importance of the manufacturing conditions on mineral chelation and the subsequent pH stability of OTMs. A selection of OTMs were assessed over a wide pH range to account for the typical environmental changes encountered in the gastrointestinal (GI) tract. In the case of proteinate type products, the potentiometric assessment of free mineral concentration indicated that the hydrolysis procedure used to generate the chelating peptides was the major influencer of the pH stability of the products. Many products are available under the umbrella term "OTMs", including amino acid complexes, amino acid chelates, polysaccharide complexes and proteinates. Significant differences in the pH-dependent stability of a range of commercially available OTMs were observed.
Identifiants
pubmed: 34200569
pii: ani11061730
doi: 10.3390/ani11061730
pmc: PMC8227544
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Food Chem. 2011 Nov 15;129(2):485-490
pubmed: 30634255
J Inorg Biochem. 2008 Sep;102(9):1700-10
pubmed: 18565588
J Inorg Biochem. 2005 Feb;99(2):627-36
pubmed: 15621297
Chem Rev. 2002 Dec;102(12):4501-24
pubmed: 12475199
Food Chem. 2017 Sep 1;230:627-636
pubmed: 28407960
Biol Trace Elem Res. 2020 Nov 20;:
pubmed: 33216320
J Anim Sci. 1992 Jan;70(1):178-87
pubmed: 1582905
Poult Sci. 2019 Jul 1;98(7):2888-2895
pubmed: 30778572
Crit Rev Food Sci Nutr. 2021;61(9):1470-1489
pubmed: 32370550
Chem Commun (Camb). 2019 Jul 9;55(56):8110-8113
pubmed: 31233054
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Aug;34(8):1344-1352
pubmed: 28608753
Biol Trace Elem Res. 2019 May;189(1):224-232
pubmed: 30062463
Chemistry. 2018 Apr 6;24(20):5153-5162
pubmed: 29194825
J Inorg Biochem. 2011 Dec;105(12):1656-61
pubmed: 22085537
J Dairy Sci. 1996 Jan;79(1):127-32
pubmed: 8675775
J Am Soc Mass Spectrom. 2010 Apr;21(4):522-33
pubmed: 20138783
Molecules. 2020 Sep 29;25(19):
pubmed: 33003506
J Adv Vet Anim Res. 2019 Feb 03;6(1):66-73
pubmed: 31453173
Biochim Biophys Acta. 2007 Sep;1767(9):1073-101
pubmed: 17692815
Anal Chim Acta. 2011 Feb 7;686(1-2):19-39
pubmed: 21237305
J Anim Sci. 2001 May;79(5):1132-41
pubmed: 11374531
Food Sci Nutr. 2015 Jun 29;4(1):11-23
pubmed: 26788306
Metallomics. 2011 Jan;3(1):61-73
pubmed: 21305075
Biol Trace Elem Res. 2016 Oct;173(2):316-24
pubmed: 26920735
Metallomics. 2009;1(3):235-48
pubmed: 21305120
Foods. 2020 Oct 02;9(10):
pubmed: 33023157
Poult Sci. 2019 Oct 1;98(10):4716-4721
pubmed: 30993341