SARS-CoV-2 Genetic Variability and Non-Specific Immunity Associated with the Use of Different BCG Strains-A Molecular and Clinical Approach.

BCG vaccinations COVID-19 SARS-CoV-2 WHO recommendation genetic variability tuberculosis variants

Journal

Vaccines
ISSN: 2076-393X
Titre abrégé: Vaccines (Basel)
Pays: Switzerland
ID NLM: 101629355

Informations de publication

Date de publication:
10 Jun 2021
Historique:
received: 24 05 2021
revised: 27 05 2021
accepted: 09 06 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

The effect of BCG vaccination against tuberculosis on the reduction in COVID-19 infection is related to the effect of the BCG vaccine on the immunomodulation of non-specific immunity. In the early stages of the pandemic, countries with universal BCG vaccination programs registered a low number of new cases of COVID-19, with the situation now reversed, as exemplified by India. The high genetic variability of SARS-CoV-2, a known characteristic of RNA viruses, causing the occurrence of SARS-CoV-2 variants may have led to the virus adapting to overcome the initial immune protection. The strains from the United Kingdom (B1.1.7), Brazil (B1.1.28 and B1.1.33), South Africa (B.1.351), and India (B.1.617) are characterized by a greater ability to spread in the environment, in comparison with the original infectious agent of SARS-CoV-2. It should be remembered that the large variation in the genetic makeup of SARS-CoV-2 may result in future changes in its pathogenicity, immunogenicity and antigenicity, and therefore it is necessary to carefully study the mutations occurring within the virus to determine whether the current vaccines will remain effective. However, most studies show that monoclonal antibodies produced after vaccination against COVID-19 are effective against the newly developed variants.

Identifiants

pubmed: 34200951
pii: vaccines9060639
doi: 10.3390/vaccines9060639
pmc: PMC8230610
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Références

J Infect Dis. 2014 May 1;209(9):1331-42
pubmed: 24065148
Trends Microbiol. 2016 Jun;24(6):490-502
pubmed: 27012512
JAMA. 2020 Apr 7;323(13):1239-1242
pubmed: 32091533
Cell Immunol. 2020 Oct;356:104187
pubmed: 32745670
J Biol Regul Homeost Agents. 2021 Feb 24;35(1):1-4
pubmed: 33377359
Viruses. 2015 May 07;7(5):2358-77
pubmed: 26008694
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
JAMA. 2020 Aug 4;324(5):510-513
pubmed: 32609307
Respirology. 2003 Nov;8 Suppl:S9-14
pubmed: 15018127
J Infect Dis. 2020 Nov 9;222(11):1869-1881
pubmed: 31889191
Lancet Infect Dis. 2021 Jan;21(1):52-58
pubmed: 33058797
Nature. 2020 Jul;583(7815):286-289
pubmed: 32380510
Lancet. 2020 Feb 22;395(10224):565-574
pubmed: 32007145
Int J Biol Macromol. 2021 Feb 15;170:820-826
pubmed: 33359807
Cold Spring Harb Perspect Med. 2014 Jun 02;4(6):
pubmed: 24890836
Signal Transduct Target Ther. 2020 Aug 27;5(1):172
pubmed: 32855385
Antiviral Res. 2020 Jun;178:104792
pubmed: 32272173
Vaccine. 2020 Sep 22;38(41):6374-6380
pubmed: 32798142
Signal Transduct Target Ther. 2021 Feb 10;6(1):58
pubmed: 33568628
Cell. 2021 Jan 7;184(1):64-75.e11
pubmed: 33275900
BMJ. 2020 Mar 25;368:m1190
pubmed: 32213488
Cell Rep. 2019 Sep 3;28(10):2659-2672.e6
pubmed: 31484076
Lancet. 2020 May 16;395(10236):1545-1546
pubmed: 32359402
JAMA Intern Med. 2020 Oct 1;180(10):1336-1344
pubmed: 32609310
PLoS Pathog. 2020 Apr 2;16(4):e1008404
pubmed: 32240273
Nature. 2020 Oct;586(7831):776-778
pubmed: 32408337
Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5
pubmed: 29324233
J Clin Invest. 2021 Jan 19;131(2):
pubmed: 33211672
Nat Med. 2020 Apr;26(4):450-452
pubmed: 32284615
Clin Exp Immunol. 2020 Nov;202(2):193-209
pubmed: 32978971
J Virol. 2020 Jan 31;94(4):
pubmed: 31776274
Nat Rev Microbiol. 2021 Mar;19(3):155-170
pubmed: 33116300
Nature. 2018 Apr;556(7700):255-258
pubmed: 29618817
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
N Engl J Med. 2012 Nov 8;367(19):1814-20
pubmed: 23075143
Nature. 2003 Nov 27;426(6965):450-4
pubmed: 14647384
Cell. 2020 Aug 20;182(4):812-827.e19
pubmed: 32697968
JAMA. 1994 Sep 14;272(10):765; author reply 766
pubmed: 8078130
Vaccine. 2020 Feb 5;38(6):1416-1423
pubmed: 31862194
Cell. 2020 May 28;181(5):1016-1035.e19
pubmed: 32413319
Curr Top Microbiol Immunol. 2005;287:1-30
pubmed: 15609507
Lancet Infect Dis. 2020 Mar;20(3):e28-e37
pubmed: 32014117
JAMA. 2020 Jun 9;323(22):2340-2341
pubmed: 32401274
Science. 2021 Mar 12;371(6534):1152-1153
pubmed: 33514629
Sci Rep. 2020 Oct 27;10(1):18377
pubmed: 33110184
Stem Cell Res Ther. 2021 Jan 29;12(1):91
pubmed: 33514427
Lancet. 2020 Mar 7;395(10226):809-815
pubmed: 32151335
EMBO J. 2005 Apr 20;24(8):1634-43
pubmed: 15791205
Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165878
pubmed: 32544429
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6
pubmed: 19321428
J Infect. 2021 Apr;82(4):e8-e10
pubmed: 33472093
J Virol. 2005 Dec;79(23):14614-21
pubmed: 16282461
Viruses. 2020 Dec 09;12(12):
pubmed: 33316947
Nature. 2013 Mar 14;495(7440):251-4
pubmed: 23486063
Front Microbiol. 2020 Jan 24;10:3022
pubmed: 32038520
Environ Int. 2020 Jun;139:105730
pubmed: 32294574
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81
pubmed: 16081529
Int J Biol Sci. 2020 Mar 15;16(10):1686-1697
pubmed: 32226286
Paediatr Respir Rev. 2020 Nov;36:57-64
pubmed: 32958428
Nat Commun. 2020 Jul 14;11(1):3572
pubmed: 32665677
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6532-6539
pubmed: 27550352
Cell. 2021 Jan 7;184(1):92-105.e16
pubmed: 33147445
J Matern Fetal Neonatal Med. 2020 Jul 21;:1-8
pubmed: 32693656
Future Virol. 2019 Apr;14(4):275-286
pubmed: 32201500
Virus Res. 2008 Apr;133(1):4-12
pubmed: 17825937
Viruses. 2021 Jan 14;13(1):
pubmed: 33466921
Lancet. 2021 Jan 23;397(10271):267
pubmed: 33485437
Curr Biol. 2020 Apr 6;30(7):1346-1351.e2
pubmed: 32197085
Front Cell Infect Microbiol. 2020 Nov 25;10:587269
pubmed: 33324574
J Transl Med. 2020 Sep 21;18(1):358
pubmed: 32957995
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17720-17726
pubmed: 32647056
mBio. 2020 Oct 13;11(5):
pubmed: 33051368
Lancet Infect Dis. 2002 Feb;2(2):86-92
pubmed: 11901655
Vet Res Commun. 2020 Nov;44(3-4):119-130
pubmed: 32926266
Heliyon. 2021 Jan;7(1):e05850
pubmed: 33392409
Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27
pubmed: 19546349
Virology. 2014 Apr;454-455:197-205
pubmed: 24725946
Am J Pathol. 2007 Apr;170(4):1136-47
pubmed: 17392154
J Infect Dis. 2016 Mar 15;213(6):904-14
pubmed: 26203058
Cell. 2020 Sep 3;182(5):1284-1294.e9
pubmed: 32730807
Clin Infect Dis. 2003 Apr 15;36(8):985-9
pubmed: 12684910
Nat Rev Immunol. 2020 Jun;20(6):335-337
pubmed: 32393823
Stem Cell Res Ther. 2020 Aug 18;11(1):361
pubmed: 32811531
Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42
pubmed: 22988082
Nat Med. 2005 Aug;11(8):875-9
pubmed: 16007097
N Engl J Med. 2020 May 21;382(21):2063
pubmed: 32294374
Clin Infect Dis. 2021 May 07;:
pubmed: 33961693
EMBO Mol Med. 2020 Jun 8;12(6):e12661
pubmed: 32379923
Nature. 2021 Apr;592(7856):667-668
pubmed: 33883710
Cell. 2020 Oct 29;183(3):739-751.e8
pubmed: 32991842
Lancet. 2020 Feb 15;395(10223):507-513
pubmed: 32007143
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Cell Death Dis. 2020 Jul 8;11(7):516
pubmed: 32641762
Antimicrob Agents Chemother. 2020 May 21;64(6):
pubmed: 32312781
Nature. 2020 Jul;583(7816):469-472
pubmed: 32408336
Cell. 2020 Apr 16;181(2):223-227
pubmed: 32220310
J Gen Virol. 2006 Nov;87(Pt 11):3349-3353
pubmed: 17030869
Antiviral Res. 2018 Feb;150:123-129
pubmed: 29258862
Front Immunol. 2020 May 08;11:970
pubmed: 32574258
Vet Res. 2007 Mar-Apr;38(2):281-97
pubmed: 17296157
Emerg Microbes Infect. 2020 Dec;9(1):991-993
pubmed: 32342724
PLoS Med. 2011 Mar;8(3):e1001012
pubmed: 21445325
Vaccine. 2018 Jun 7;36(24):3408-3410
pubmed: 29609965
Science. 2020 Dec 18;370(6523):1464-1468
pubmed: 33184236
Allergol Immunopathol (Madr). 2020 Sep - Oct;48(5):507-517
pubmed: 32653224
Nat Med. 2020 Apr;26(4):502-505
pubmed: 32284613
J Virol. 2013 May;87(10):5502-11
pubmed: 23468491
Cell. 2020 May 14;181(4):894-904.e9
pubmed: 32275855

Auteurs

Jakub Kulus (J)

Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.

Magdalena Kulus (M)

Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.

Katarzyna Stefańska (K)

Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.

Jarosław Sobolewski (J)

Department of Public Health Protection and Animal Welfare, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.

Hanna Piotrowska-Kempisty (H)

Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland.
Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.

Paul Mozdziak (P)

Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA.

Bartosz Kempisty (B)

Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.
Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA.
Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland.

Classifications MeSH