Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface.

deep planting drought early vigor hydrotropism mesocotyl elongation primary root

Journal

Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181

Informations de publication

Date de publication:
23 Jun 2021
Historique:
received: 10 04 2021
revised: 06 05 2021
accepted: 10 05 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.

Identifiants

pubmed: 34201525
pii: plants10071274
doi: 10.3390/plants10071274
pmc: PMC8309072
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Références

Plant J. 2006 Feb;45(4):523-39
pubmed: 16441347
Plant Sci. 2020 Jan;290:110196
pubmed: 31779899
Theor Appl Genet. 2004 Aug;109(3):618-29
pubmed: 15179549
Plant Physiol. 1992 May;99(1):26-33
pubmed: 16668859
Curr Biol. 2015 May 4;25(9):R345-7
pubmed: 26146676
Plants (Basel). 2015 Jun 15;4(2):334-55
pubmed: 27135332
Plant Physiol. 2005 Nov;139(3):1255-67
pubmed: 16215225
Plant Cell. 2019 May;31(5):993-1011
pubmed: 30923229
Int J Mol Sci. 2019 Mar 13;20(6):
pubmed: 30871211
Plant Physiol. 1995;109:725-7
pubmed: 11539165
Front Plant Sci. 2017 May 22;8:813
pubmed: 28588594
Curr Biol. 2010 Jun 22;20(12):1138-43
pubmed: 20605455
Plant Physiol. 1944 Jul;19(3):537-43
pubmed: 16653935
Glob Food Sec. 2017 Mar;12:31-37
pubmed: 28580238
Funct Plant Biol. 2009 Nov;36(11):922-929
pubmed: 32688703
Cell. 1997 Sep 5;90(5):929-38
pubmed: 9298904
Plant Cell. 2008 Aug;20(8):2130-45
pubmed: 18708477
Heredity (Edinb). 2014 Jan;112(1):30-8
pubmed: 23462502
Genes (Basel). 2019 Dec 31;11(1):
pubmed: 31906181
Nature. 2010 Jul 29;466(7306):552-3
pubmed: 20671689
Trends Plant Sci. 2018 Jan;23(1):79-88
pubmed: 29170008
Theor Appl Genet. 2013 Oct;126(10):2587-96
pubmed: 23884600
Plant Physiol. 1986;81:439-43
pubmed: 11538659
Int J Mol Sci. 2018 Dec 16;19(12):
pubmed: 30558382
Ann Bot. 2013 Jul;112(2):347-57
pubmed: 23328767
Plant Physiol. 2003 Dec;133(4):1578-91
pubmed: 14645729
Plant Signal Behav. 2014;9(10):e970442
pubmed: 25482807
Trends Plant Sci. 2007 Oct;12(10):474-81
pubmed: 17822944
J Exp Bot. 2020 Jul 6;71(14):4243-4257
pubmed: 32420593
Int J Plant Sci. 1993 Jun;154(2):280-9
pubmed: 11538878
Front Plant Sci. 2014 Nov 03;5:581
pubmed: 25404934
Biochem J. 1992 Mar 15;282 ( Pt 3):821-8
pubmed: 1554366
Plant Sci. 2017 Dec;265:87-99
pubmed: 29223345
BMC Plant Biol. 2014 Apr 01;14:83
pubmed: 24684805
Nat Genet. 2011 Feb;43(2):159-62
pubmed: 21217756
PLoS One. 2012;7(3):e33071
pubmed: 22438891
Plant Physiol. 1990 Aug;93(4):1329-36
pubmed: 16667621
Protoplasma. 2016 Jan;253(1):3-14
pubmed: 25772679
Plant Physiol. 2013 Nov;163(3):1306-22
pubmed: 24089437
Plant Physiol. 1983 Sep;73(1):153-8
pubmed: 16663165
Plant Physiol. 1966 Jun;41(6):932-6
pubmed: 16656358
Methods Mol Biol. 2015;1309:133-42
pubmed: 25981773
Mol Plant. 2013 Nov;6(6):1738-57
pubmed: 23761349
Theor Appl Genet. 2012 Jan;124(1):223-32
pubmed: 22057118
Plant Biotechnol J. 2016 Jul;14(7):1551-62
pubmed: 26801971
Ann Bot. 2004 Apr;93(4):359-68
pubmed: 14980975
Plant Physiol. 1991;96:558-64
pubmed: 11538004
Rice (N Y). 2012 Dec;5(1):13
pubmed: 27234239
Planta. 2019 Dec 4;251(1):27
pubmed: 31802259
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):3913-20
pubmed: 24599595
Plant Physiol. 2003 Jun;132(2):436-9
pubmed: 12805576
Arabidopsis Book. 2008;6:e0119
pubmed: 22303244
Plant Physiol. 1992 Nov;100(3):1238-42
pubmed: 16653111
Plant Genome. 2016 Mar;9(1):
pubmed: 27898762
PLoS One. 2013 Nov 11;8(11):e80002
pubmed: 24244592
J Exp Bot. 2013 Nov;64(16):5065-74
pubmed: 24052532
Plant Physiol. 1941 Oct;16(4):691-720
pubmed: 16653734
Trends Plant Sci. 2020 Apr;25(4):406-417
pubmed: 31964602
Plant Cell. 2018 Dec;30(12):2922-2942
pubmed: 30413654
Front Plant Sci. 2017 Mar 30;8:436
pubmed: 28424719
J Exp Bot. 2016 Aug;67(15):4581-91
pubmed: 27307546
Plant Physiol. 1987;83:241-3
pubmed: 11539030
Curr Biol. 2017 Sep 11;27(17):R964-R972
pubmed: 28898669
Plant Physiol. 2000 Dec;124(4):1648-57
pubmed: 11115882
Plant Cell. 2012 Apr;24(4):1420-36
pubmed: 22523204
Plant Sci. 2018 Jul;272:276-293
pubmed: 29807601
Theor Appl Genet. 2002 Oct;105(5):745-753
pubmed: 12582488
Plant Cell. 2002;14 Suppl:S207-25
pubmed: 12045278
BMC Plant Biol. 2018 Aug 15;18(1):171
pubmed: 30111287
Plants (Basel). 2019 Jan 30;8(2):
pubmed: 30704089
Front Plant Sci. 2020 May 08;11:544
pubmed: 32457782
Plant Cell. 2017 May;29(5):1053-1072
pubmed: 28465411
Plant Physiol. 2002 Sep;130(1):155-63
pubmed: 12226496
Plant Physiol. 2007 Nov;145(3):575-88
pubmed: 17766395
Plant Signal Behav. 2012 Mar;7(3):301-5
pubmed: 22476469
BMC Plant Biol. 2015 Sep 11;15:218
pubmed: 26362270
Genet Mol Res. 2010 Mar 16;9(1):484-505
pubmed: 20391333
PLoS One. 2017 Jul 12;12(7):e0179477
pubmed: 28700592
Adv Space Res. 1999;23(12):1971-4
pubmed: 11710378
Plant Cell Physiol. 2018 Oct 1;59(10):1919-1930
pubmed: 30020530
PLoS One. 2018 Oct 23;13(10):e0205683
pubmed: 30352069
Plant Cell Environ. 2002 Sep;25(9):1191-6
pubmed: 12361060
J Integr Plant Biol. 2014 Aug;56(8):749-59
pubmed: 24571491
J Biol Chem. 2001 Apr 13;276(15):11453-6
pubmed: 11279228
Genes (Basel). 2019 Oct 02;10(10):
pubmed: 31581635
Planta. 1982 Dec;156(5):388-95
pubmed: 24272650
Nat Rev Genet. 2007 Mar;8(3):217-30
pubmed: 17304247
Land Degrad Dev. 2018 Aug;29(8):2378-2389
pubmed: 30393451
Plant Sci. 2017 Oct;263:132-141
pubmed: 28818369
Plant Physiol. 1995 Oct;109(2):593-601
pubmed: 12228616
Plant Physiol. 1978 Apr;61(4):534-7
pubmed: 16660331
Plant J. 2015 Sep;83(5):903-12
pubmed: 26189993
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2756-61
pubmed: 11038610
J Plant Physiol. 2021 May;260:153409
pubmed: 33774509
Annu Rev Phytopathol. 1996;34:325-46
pubmed: 15012546
Front Plant Sci. 2019 Mar 20;10:314
pubmed: 30949189
Plant Physiol. 2003 Feb;131(2):803-13
pubmed: 12586904
Front Plant Sci. 2018 Feb 23;9:229
pubmed: 29527220
Front Plant Sci. 2017 Jun 29;8:1147
pubmed: 28706531
Front Plant Sci. 2016 Aug 31;7:1335
pubmed: 27630659
J Exp Bot. 2015 Jun;66(11):3151-62
pubmed: 25903914
Mol Plant. 2012 Mar;5(2):334-8
pubmed: 22155950
Philos Trans R Soc Lond B Biol Sci. 2012 Jun 5;367(1595):1441-52
pubmed: 22527386
Plant Physiol. 1997 Aug;114(4):1369-1376
pubmed: 12223775
J Exp Bot. 2013 Sep;64(12):3519-50
pubmed: 23956409
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:215-243
pubmed: 15012288
Theor Appl Genet. 1996 Feb;92(2):191-203
pubmed: 24166168
Plant Physiol. 1988 May;87(1):50-7
pubmed: 16666126
Physiol Plant. 2003 Mar;117(3):305-313
pubmed: 12654030

Auteurs

Mery Nair Sáenz Rodríguez (MN)

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico.

Gladys Iliana Cassab (GI)

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico.

Classifications MeSH