Glycine Receptors in Spinal Nociceptive Control-An Update.
GABA
allodynia
circuit
dorsal horn
glycine
hyperalgesia
inhibition
mouse
pain
spinal cord
Journal
Biomolecules
ISSN: 2218-273X
Titre abrégé: Biomolecules
Pays: Switzerland
ID NLM: 101596414
Informations de publication
Date de publication:
06 06 2021
06 06 2021
Historique:
received:
12
05
2021
revised:
03
06
2021
accepted:
03
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
24
9
2021
Statut:
epublish
Résumé
Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.
Identifiants
pubmed: 34204137
pii: biom11060846
doi: 10.3390/biom11060846
pmc: PMC8228028
pii:
doi:
Substances chimiques
Endocannabinoids
0
Receptors, Glycine
0
Zonisamide
459384H98V
Propofol
YI7VU623SF
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Références
J Comp Neurol. 2014 Feb 1;522(2):393-413
pubmed: 23818225
Cell Mol Life Sci. 2018 Feb;75(3):447-465
pubmed: 28791431
Naunyn Schmiedebergs Arch Pharmacol. 2005 Aug;372(2):107-14
pubmed: 16217643
Biochem Pharmacol. 2020 Oct;180:114117
pubmed: 32579961
Neuroscience. 2021 Mar 1;457:235-258
pubmed: 33460731
Neurosci Lett. 2008 Jun 6;437(3):170-4
pubmed: 18406524
Nature. 2003 Aug 21;424(6951):938-42
pubmed: 12931188
Biochem Pharmacol. 2008 Oct 15;76(8):1014-23
pubmed: 18755158
J Exp Med. 2012 Jun 4;209(6):1121-34
pubmed: 22585736
J Comp Neurol. 2003 Oct 27;465(4):524-39
pubmed: 12975813
J Clin Invest. 2010 Nov;120(11):4118-28
pubmed: 20978350
J Physiol. 2007 Jun 1;581(Pt 2):603-18
pubmed: 17347278
Adv Pharmacol. 2017;79:225-253
pubmed: 28528670
Brain Res. 1999 Jun 26;833(1):71-80
pubmed: 10375678
Neurobiol Aging. 2010 Jul;31(7):1227-37
pubmed: 18786748
Bioorg Med Chem. 2010 Apr 15;18(8):2912-9
pubmed: 20346682
Mol Pharmacol. 1994 Dec;46(6):1156-9
pubmed: 7808436
PLoS One. 2007 Nov 07;2(11):e1116
pubmed: 17987109
Neuron. 2021 Jan 6;109(1):73-90.e7
pubmed: 33181066
Br J Pharmacol. 1996 Aug;118(8):2115-25
pubmed: 8864550
J Clin Invest. 2016 Jul 1;126(7):2547-60
pubmed: 27270175
Cell Rep. 2015 Nov 10;13(6):1246-1257
pubmed: 26527000
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15749-54
pubmed: 26647187
Ann N Y Acad Sci. 2010 Jun;1198:153-8
pubmed: 20536929
J Physiol. 2010 Jul 15;588(Pt 14):2571-87
pubmed: 20498232
Anesthesiology. 2011 Sep;115(3):464-73
pubmed: 21673564
J Physiol. 2011 May 15;589(Pt 10):2459-74
pubmed: 21486794
J Biomol Screen. 2016 Dec;21(10):1042-1053
pubmed: 27412533
Brain. 2018 Jan 1;141(1):63-71
pubmed: 29149236
Eur J Med Chem. 2017 Sep 8;137:63-75
pubmed: 28575722
J Physiol. 2005 Jul 15;566(Pt 2):355-68
pubmed: 15878938
J Physiol. 2003 Jul 15;550(Pt 2):373-83
pubmed: 12754315
Neuroscience. 1989;31(3):799-806
pubmed: 2594201
J Med Chem. 2017 Feb 9;60(3):1105-1125
pubmed: 28001399
Nat Chem Biol. 2011 May;7(5):296-303
pubmed: 21460829
J Neurosci. 2020 Jun 24;40(26):4981-4996
pubmed: 32434779
Brain Res. 2013 Nov 13;1538:1-16
pubmed: 24080401
Sci Rep. 2020 Mar 16;10(1):4804
pubmed: 32179786
Org Biomol Chem. 2013 Jul 28;11(28):4695-701
pubmed: 23760172
Cell. 2014 Dec 4;159(6):1417-1432
pubmed: 25467445
Brain Res. 2012 Mar 29;1446:12-21
pubmed: 22330726
Nature. 2001 May 31;411(6837):587-90
pubmed: 11385573
Mol Pharmacol. 2000 Oct;58(4):763-70
pubmed: 10999946
Nature. 2005 Dec 15;438(7070):1017-21
pubmed: 16355225
Nat Struct Mol Biol. 2017 Feb;24(2):108-113
pubmed: 27991902
Front Pharmacol. 2019 Apr 08;10:331
pubmed: 31024303
Neurosci Biobehav Rev. 2017 Sep;80:329-350
pubmed: 28624432
ACS Chem Neurosci. 2013 Oct 16;4(10):1361-70
pubmed: 23834509
Nat Neurosci. 2002 Jan;5(1):34-40
pubmed: 11740501
PLoS One. 2011;6(8):e23886
pubmed: 21901142
J Clin Invest. 2013 Sep;123(9):4050-62
pubmed: 23979158
Brain Res. 2009 Dec 11;1305 Suppl:S27-36
pubmed: 19781529
Neuron. 2015 Mar 18;85(6):1289-304
pubmed: 25789756
Bioorg Med Chem. 2013 Jul 15;21(14):4420-5
pubmed: 23685178
J Clin Invest. 2005 Mar;115(3):673-9
pubmed: 15719070
Nature. 2015 Oct 8;526(7572):277-80
pubmed: 26416729
Mol Pharmacol. 2016 Sep;90(3):318-25
pubmed: 27401877
J Pharmacol Exp Ther. 2001 Apr;297(1):338-51
pubmed: 11259561
Neuroscience. 2003;122(3):799-805
pubmed: 14622922
Neuroscience. 2016 Apr 21;320:1-7
pubmed: 26851771
Pain. 2006 Dec 15;126(1-3):46-53
pubmed: 16846696
J Comp Neurol. 2004 Sep 27;477(4):399-411
pubmed: 15329889
J Neurosci. 2006 Feb 8;26(6):1833-43
pubmed: 16467532
J Neurochem. 2007 Feb;100(3):758-69
pubmed: 17181559
Pharmacol Res. 2017 Feb;116:93-99
pubmed: 27988386
Mol Pain. 2009 Nov 18;5:65
pubmed: 19919721
J Neurosci. 2002 Apr 1;22(7):2617-25
pubmed: 11923427
PLoS One. 2013 Aug 23;8(8):e73370
pubmed: 24009748
Anesth Analg. 2004 Jul;99(1):91-6
pubmed: 15281510
Science. 2004 May 7;304(5672):884-7
pubmed: 15131310
Adv Ther. 2014 Mar;31(3):276-88
pubmed: 24522856
Science. 2016 Nov 4;354(6312):578-584
pubmed: 27811268
Neuropharmacology. 2021 Jan;182:108371
pubmed: 33122032
Curr Opin Chem Biol. 2013 Apr;17(2):129-36
pubmed: 23478014