An Autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics.

autoencoder deep learning false nearest neighbor load/system identification structural dynamics

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
19 Jun 2021
Historique:
received: 20 05 2021
revised: 14 06 2021
accepted: 16 06 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 7 7 2021
Statut: epublish

Résumé

In civil engineering, different machine learning algorithms have been adopted to process the huge amount of data continuously acquired through sensor networks and solve inverse problems. Challenging issues linked to structural health monitoring or load identification are currently related to big data, consisting of structural vibration recordings shaped as a multivariate time series. Any algorithm should therefore allow an effective dimensionality reduction, retaining the informative content of data and inferring correlations within and across the time series. Within this framework, we propose a time series AutoEncoder (AE) employing inception modules and residual learning for the encoding and the decoding parts, and an extremely reduced latent representation specifically tailored to tackle load identification tasks. We discuss the choice of the dimensionality of this latent representation, considering the sources of variability in the recordings and the inverse-forward nature of the AE. To help setting the aforementioned dimensionality, the false nearest neighbor heuristics is also exploited. The reported numerical results, related to shear buildings excited by dynamic loadings, highlight the signal reconstruction capacity of the proposed AE, and the capability to accomplish the load identification task.

Identifiants

pubmed: 34205265
pii: s21124207
doi: 10.3390/s21124207
pmc: PMC8234826
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828
pubmed: 23787338
Sensors (Basel). 2020 Apr 19;20(8):
pubmed: 32325821
Phys Rev A. 1992 Mar 15;45(6):3403-3411
pubmed: 9907388

Auteurs

Luca Rosafalco (L)

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

Andrea Manzoni (A)

MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

Stefano Mariani (S)

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

Alberto Corigliano (A)

Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis

Classifications MeSH