Rice Seed Purity Identification Technology Using Hyperspectral Image with LASSO Logistic Regression Model.
LASSO logistic regression model
grey-scale image
hyperspectral imaging
seed purity identification
wavelength band selection
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
26 Jun 2021
26 Jun 2021
Historique:
received:
29
05
2021
revised:
22
06
2021
accepted:
24
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
7
7
2021
Statut:
epublish
Résumé
Hyperspectral technology is used to obtain spectral and spatial information of samples simultaneously and demonstrates significant potential for use in seed purity identification. However, it has certain limitations, such as high acquisition cost and massive redundant information. This study integrates the advantages of the sparse feature of the least absolute shrinkage and selection operator (LASSO) algorithm and the classification feature of the logistic regression model (LRM). We propose a hyperspectral rice seed purity identification method based on the LASSO logistic regression model (LLRM). The feasibility of using LLRM for the selection of feature wavelength bands and seed purity identification are discussed using four types of rice seeds as research objects. The results of 13 different adulteration cases revealed that the value of the regularisation parameter was different in each case. The recognition accuracy of LLRM and average recognition accuracy were 91.67-100% and 98.47%, respectively. Furthermore, the recognition accuracy of full-band LRM was 71.60-100%. However, the average recognition accuracy was merely 89.63%. These results indicate that LLRM can select the feature wavelength bands stably and improve the recognition accuracy of rice seeds, demonstrating the feasibility of developing a hyperspectral technology with LLRM for seed purity identification.
Identifiants
pubmed: 34206783
pii: s21134384
doi: 10.3390/s21134384
pmc: PMC8271842
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : U1833119 and 42074172
Organisme : National Food and Strategic Reserves Administration Foundation
ID : LQ2018501
Organisme : Hubei Province Natural Science Foundation for Distinguished Young Scholars
ID : 2020CFA063
Références
Crit Rev Food Sci Nutr. 2015;55(10):1368-82
pubmed: 24689555
Front Plant Sci. 2020 Nov 10;11:575810
pubmed: 33240294
J Vasc Surg. 2011 Dec;54(6):1679-88
pubmed: 21803525
Talanta. 2005 Oct 15;67(4):736-40
pubmed: 18970233
J Zhejiang Univ Sci B. 2005 Nov;6(11):1095-100
pubmed: 16252344
Sensors (Basel). 2015 Jul 01;15(7):15578-94
pubmed: 26140347
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68
pubmed: 15943426
Sensors (Basel). 2018 Feb 02;18(2):
pubmed: 29393921
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Aug 5;219:179-185
pubmed: 31035128
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Jun 15;234:118237
pubmed: 32200232
Sensors (Basel). 2013 Jul 12;13(7):8916-27
pubmed: 23857260
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 15;229:117973
pubmed: 31887678
Talanta. 2013 Jan 15;103:276-84
pubmed: 23200388
Food Chem. 2020 Nov 30;331:127290
pubmed: 32544654
Sensors (Basel). 2017 Apr 09;17(4):
pubmed: 28397773
Front Plant Sci. 2020 Jun 24;11:821
pubmed: 32670316
Molecules. 2019 Dec 30;25(1):
pubmed: 31905957
Int J Biol Macromol. 2005 Oct 30;37(1-2):12-20
pubmed: 16140371