Adhesion and Growth of Neuralized Mouse Embryonic Stem Cells on Parylene-C/SiO
mESCs
neuron
parylene-C
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
09 Jun 2021
09 Jun 2021
Historique:
received:
03
05
2021
revised:
03
06
2021
accepted:
07
06
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
3
7
2021
Statut:
epublish
Résumé
Neuronal patterning on microfabricated architectures has developed rapidly over the past few years, together with the emergence of soft biocompatible materials and tissue engineering scaffolds. Previously, we introduced a patterning technique based on serum and the biopolymer parylene-C, achieving highly compliant growth of primary neurons and astrocytes on different geometries. Here, we expanded this technique and illustrated that neuralized cells derived from mouse embryonic stem cells (mESCs) followed stripes of variable widths with conformity equal to or higher than that of primary neurons and astrocytes. Our results indicate the presence of undifferentiated mESCs, which also conformed to the underlying patterns to a high degree. This is an exciting and unexpected outcome, as molecular mechanisms governing cell and ECM protein interactions are different in stem cells and primary cells. Our study enables further investigations into the development and electrophysiology of differentiating patterned neural stem cells.
Identifiants
pubmed: 34207642
pii: ma14123174
doi: 10.3390/ma14123174
pmc: PMC8226677
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Engineering and Physical Sciences Research Council
ID : EP/G005508/1
Références
J Neural Eng. 2020 Jul 24;17(4):044001
pubmed: 32604074
Cell Stem Cell. 2010 Sep 3;7(3):355-66
pubmed: 20804971
Biomaterials. 2004 Aug;25(18):4073-8
pubmed: 15046898
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1312-1319
pubmed: 31135364
Biosens Bioelectron. 2007 Apr 15;22(9-10):2346-50
pubmed: 17008089
J Biomed Mater Res A. 2008 Jul;86(1):278-88
pubmed: 18442109
Sci Rep. 2014 Apr 24;4:4784
pubmed: 24759264
Biosens Bioelectron. 2015 May 15;67:450-7
pubmed: 25256782
Biomaterials. 2011 Sep;32(27):6541-50
pubmed: 21641029
Biomaterials. 2007 Jul;28(21):3208-16
pubmed: 17434582
PLoS One. 2011;6(9):e25411
pubmed: 21966523
Adv Healthc Mater. 2016 Jun;5(12):1429-38
pubmed: 27028356
Adv Healthc Mater. 2018 Jun;7(12):e1800122
pubmed: 29700986
J Mater Chem B. 2018 Sep 14;6(34):5424-5434
pubmed: 32254601
J Neurosci Methods. 1997 Feb;71(2):143-55
pubmed: 9128149
Adv Healthc Mater. 2016 Jan 7;5(1):159-66
pubmed: 26332914
J Neurosci Methods. 2016 Jan 15;257:194-203
pubmed: 26432934
Front Neurosci. 2021 Jan 12;14:524346
pubmed: 33510605
J Neural Eng. 2018 Jun;15(3):036015
pubmed: 29424361
J Mater Chem B. 2016 Jan 7;4(1):37-45
pubmed: 32262807
ACS Appl Mater Interfaces. 2020 Apr 8;12(14):17121-17129
pubmed: 32186363
IEEE Trans Biomed Eng. 1996 Sep;43(9):944-55
pubmed: 9214810
Biomaterials. 2009 Apr;30(11):2048-58
pubmed: 19138795
Neurosci Lett. 2000 Apr 7;283(2):157-61
pubmed: 10739899
Biomaterials. 2016 Oct;105:117-126
pubmed: 27521614
Biomaterials. 2001 Jul;22(13):1925-32
pubmed: 11396899
Langmuir. 2011 May 17;27(10):6155-62
pubmed: 21486006
Lab Chip. 2007 Oct;7(10):1272-9
pubmed: 17896010
Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:190-201
pubmed: 28532021
Adv Healthc Mater. 2019 Nov;8(22):e1901015
pubmed: 31599123
Biofabrication. 2013 Jun;5(2):025006
pubmed: 23466346
Colloids Surf B Biointerfaces. 2015 Feb 1;126:169-77
pubmed: 25555155
J Biomed Mater Res A. 2010 Jul;94(1):47-58
pubmed: 20091707
J Neurosci Methods. 2010 Dec 15;194(1):154-7
pubmed: 20933004
Biomaterials. 2011 Apr;32(10):2566-74
pubmed: 21232788
Cell Stem Cell. 2020 Feb 6;26(2):172-186.e6
pubmed: 31956040
Cell Stem Cell. 2008 Sep 11;3(3):289-300
pubmed: 18786416