Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes.
Antimicrobial resistant genes
Dairy buffaloes
Dairy cattle
Microbiome
Rumen
Journal
Animal microbiome
ISSN: 2524-4671
Titre abrégé: Anim Microbiome
Pays: England
ID NLM: 101759457
Informations de publication
Date de publication:
01 Jul 2021
01 Jul 2021
Historique:
received:
22
11
2020
accepted:
31
05
2021
entrez:
2
7
2021
pubmed:
3
7
2021
medline:
3
7
2021
Statut:
epublish
Résumé
Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics. Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment. The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.
Sections du résumé
BACKGROUND
BACKGROUND
Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics.
RESULTS
RESULTS
Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment.
CONCLUSIONS
CONCLUSIONS
The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.
Identifiants
pubmed: 34210366
doi: 10.1186/s42523-021-00103-6
pii: 10.1186/s42523-021-00103-6
pmc: PMC8247143
doi:
Types de publication
Journal Article
Langues
eng
Pagination
44Subventions
Organisme : National Natural Science Foundation of China
ID : 31872380
Organisme : National Natural Science Foundation of China
ID : 32002207
Organisme : Fundamental Research Funds for the Central Universities
ID : 2021-KYY-517103-0002
Références
mSystems. 2020 Mar 3;5(2):
pubmed: 32127421
J Proteome Res. 2015 Aug 7;14(8):3322-35
pubmed: 26088811
Sci Rep. 2017 Aug 10;7(1):7851
pubmed: 28798330
Bioinformatics. 2018 Sep 1;34(17):i884-i890
pubmed: 30423086
Theriogenology. 2020 Jul 15;151:95-102
pubmed: 32320839
J Dairy Sci. 2010 May;93(5):2195-201
pubmed: 20412935
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53
pubmed: 19181843
Benef Microbes. 2018 Jun 15;9(4):613-624
pubmed: 29633640
Mol Biol Rep. 2012 Dec;39(12):10769-74
pubmed: 23053974
Genome Biol. 2011 Jun 24;12(6):R60
pubmed: 21702898
BMC Microbiol. 2018 Aug 30;18(1):96
pubmed: 30165820
Bioinformatics. 2012 Dec 1;28(23):3150-2
pubmed: 23060610
Nat Microbiol. 2018 Aug;3(8):898-908
pubmed: 30038308
Nat Commun. 2020 Mar 18;11(1):1427
pubmed: 32188862
Funct Integr Genomics. 2019 Mar;19(2):237-247
pubmed: 30357583
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Microbiome. 2020 Mar 2;8(1):26
pubmed: 32122398
Microbiome. 2017 Dec 11;5(1):159
pubmed: 29228991
J Appl Microbiol. 2003;94(6):981-7
pubmed: 12752805
Nat Microbiol. 2019 Dec;4(12):2285-2297
pubmed: 31501537
Sci Rep. 2015 Oct 09;5:14567
pubmed: 26449758
Biotechniques. 2004 May;36(5):808-12
pubmed: 15152600
Bioinformatics. 2015 May 15;31(10):1674-6
pubmed: 25609793
Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525
pubmed: 31665441
Front Microbiol. 2018 Sep 28;9:2220
pubmed: 30323790
Bioinformatics. 2009 Aug 1;25(15):1966-7
pubmed: 19497933
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22
pubmed: 21715386
Microb Biotechnol. 2016 Mar;9(2):257-68
pubmed: 26833450
Environ Sci Technol. 2013 Mar 19;47(6):2892-7
pubmed: 23419160
PLoS One. 2012;7(6):e28742
pubmed: 22719820
Microb Ecol. 2010 Nov;60(4):721-9
pubmed: 20585943
ISME J. 2020 Jun;14(6):1584-1599
pubmed: 32203121
Front Microbiol. 2018 Sep 24;9:2285
pubmed: 30319585
Nat Commun. 2020 Apr 20;11(1):1904
pubmed: 32312972
Nature. 2014 May 29;509(7502):612-6
pubmed: 24847883
Lancet Infect Dis. 2017 Apr;17(4):390-399
pubmed: 28139431
Lancet Infect Dis. 2016 Mar;16(3):293
pubmed: 26973308
J Anim Physiol Anim Nutr (Berl). 2019 Sep;103(5):1374-1379
pubmed: 31309620
Nucleic Acids Res. 2018 Jan 4;46(D1):D677-D683
pubmed: 29088389
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19430-5
pubmed: 17146048
J Dairy Sci. 2009 Mar;92(3):907-12
pubmed: 19233783
Nat Commun. 2019 Nov 20;10(1):5252
pubmed: 31748524
J Hazard Mater. 2020 Nov 15;399:123059
pubmed: 32516648
Front Microbiol. 2020 Jan 09;10:2998
pubmed: 31998275
Sci Rep. 2016 Aug 30;6:32192
pubmed: 27573068
J Dairy Sci. 2012 Oct;95(10):5978-84
pubmed: 22921624
BMC Bioinformatics. 2008 Dec 29;9:559
pubmed: 19114008
Sci Rep. 2017 Jan 06;7:39761
pubmed: 28059108
Nat Commun. 2019 Sep 27;10(1):4406
pubmed: 31562300
Nat Microbiol. 2019 Sep;4(9):1450-1456
pubmed: 31133751
Nucleic Acids Res. 2006;34(19):5623-30
pubmed: 17028096
J Bacteriol. 1992 Jun;174(11):3651-8
pubmed: 1592819
Mycobiology. 2018 Nov 16;46(4):349-360
pubmed: 30637143
Science. 2009 Aug 28;325(5944):1128-1131
pubmed: 19713526
Biotechnol Biofuels. 2019 Jun 20;12:153
pubmed: 31249617
Chem Biol. 2001 Mar;8(3):253-63
pubmed: 11306350
Lancet Infect Dis. 2016 Feb;16(2):161-8
pubmed: 26603172
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
pubmed: 24270786
Bioinformatics. 2020 Apr 15;36(8):2530-2537
pubmed: 31873721
Environ Int. 2020 May;138:105649
pubmed: 32200314