Visualizing Material Processing via Photoexcitation-Controlled Organic-Phase Aggregation-Induced Emission.


Journal

Research (Washington, D.C.)
ISSN: 2639-5274
Titre abrégé: Research (Wash D C)
Pays: United States
ID NLM: 101747148

Informations de publication

Date de publication:
2021
Historique:
received: 17 02 2021
accepted: 11 05 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 3 7 2021
Statut: epublish

Résumé

Aggregation-induced emission (AIE) has been much employed for visualizing material aggregation and self-assembly. However, water is generally required for the preparation of the AIE aggregates, the operation of which limits numerous material processing behaviors. Employing hexathiobenzene-based small molecules, monopolymers, and block copolymers as different material prototypes, we herein achieve AIE in pure organic phases by applying a nonequilibrium strategy, photoexcitation-controlled aggregation. This strategy enabled a dynamic change of molecular conformation rather than chemical structure upon irradiation, leading to a continuous aggregation-dependent luminescent enhancement (up to ~200-fold increase of the luminescent quantum yield) in organic solvents. Accompanied by the materialization of the nonequilibrium strategy, photoconvertible self-assemblies with a steady-state characteristic can be achieved upon organic solvent processing. The visual monitoring with the luminescence change covered the whole solution-to-film transition, as well as the in situ photoprocessing of the solid-state materials.

Identifiants

pubmed: 34212154
doi: 10.34133/2021/9862093
pmc: PMC8208088
doi:

Types de publication

Journal Article

Langues

eng

Pagination

9862093

Informations de copyright

Copyright © 2021 Jian Gu et al.

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Nat Commun. 2019 Feb 13;10(1):731
pubmed: 30760723
Chem Soc Rev. 2012 Sep 21;41(18):5969-85
pubmed: 22776960
Nat Mater. 2009 Sep;8(9):747-51
pubmed: 19668206
Chem Commun (Camb). 2001 Sep 21;(18):1740-1
pubmed: 12240292
Chem Commun (Camb). 2016 Feb 4;52(10):2063-6
pubmed: 26688276
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4816-4821
pubmed: 30796185
Angew Chem Int Ed Engl. 2018 Jul 9;57(28):8425-8431
pubmed: 29766632
J Am Chem Soc. 2013 Apr 3;135(13):5175-82
pubmed: 23488680
J Am Chem Soc. 2004 Aug 25;126(33):10232-3
pubmed: 15315421
J Phys Chem B. 2007 Feb 8;111(5):929-40
pubmed: 17266245
Small. 2019 Feb;15(7):e1804572
pubmed: 30673173
J Am Chem Soc. 2017 Jan 18;139(2):785-791
pubmed: 28027639
Nat Chem. 2017 Feb;9(2):145-151
pubmed: 28282043
Research (Wash D C). 2021 Jan 9;2021:7897849
pubmed: 33623922
Angew Chem Int Ed Engl. 2008;47(28):5175-8
pubmed: 18512835
Adv Mater. 2019 Sep;31(37):e1903962
pubmed: 31379097
Acc Chem Res. 2013 Nov 19;46(11):2441-53
pubmed: 23742638
Nat Biotechnol. 2017 Nov;35(11):1102-1110
pubmed: 29035373
Angew Chem Int Ed Engl. 2015 Sep 21;54(39):11419-23
pubmed: 26094980
J Am Chem Soc. 2014 Sep 24;136(38):13381-7
pubmed: 25208609
Science. 2008 Oct 17;322(5900):429-32
pubmed: 18818367
Nat Nanotechnol. 2016 Sep;11(9):769-75
pubmed: 27323302
Adv Mater. 2017 Apr;29(15):
pubmed: 28195448
Adv Mater. 2017 Jan;29(1):
pubmed: 27805762
Small. 2020 Feb;16(7):e1906475
pubmed: 31994360
J Phys Chem Lett. 2019 Nov 21;10(22):7077-7085
pubmed: 31663748
Chem Sci. 2018 Mar 13;9(15):3685-3693
pubmed: 29780499
ACS Nano. 2014 Jun 24;8(6):5746-56
pubmed: 24824380
Angew Chem Int Ed Engl. 2019 May 20;58(21):7073-7077
pubmed: 30916461
Langmuir. 2016 Jun 28;32(25):6429-36
pubmed: 27275516
Nat Nanotechnol. 2015 Feb;10(2):111-9
pubmed: 25652169
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1178-83
pubmed: 16432207
Chem Commun (Camb). 2017 Feb 28;53(18):2661-2664
pubmed: 27424946
J Phys Chem Lett. 2018 Feb 1;9(3):550-556
pubmed: 29337568
Nat Commun. 2020 Jan 9;11(1):158
pubmed: 31919416
J Am Chem Soc. 2003 May 14;125(19):5612-3
pubmed: 12733882
Research (Wash D C). 2020 Feb 7;2020:8183450
pubmed: 32110780
Nat Commun. 2018 Feb 26;9(1):840
pubmed: 29483501
Chem Soc Rev. 2011 Nov;40(11):5361-88
pubmed: 21799992
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3865-3872
pubmed: 28073247
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11419-11423
pubmed: 31206936
Nat Chem. 2018 Jun;10(6):659-666
pubmed: 29713034
Angew Chem Int Ed Engl. 2020 May 4;59(19):7548-7554
pubmed: 32073698
Adv Mater. 2015 Aug;27(30):4496-4501
pubmed: 26135057
Nat Commun. 2020 Feb 18;11(1):945
pubmed: 32071313
Sci Adv. 2018 May 04;4(5):eaas9732
pubmed: 29736419

Auteurs

Jian Gu (J)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Bingbing Yue (B)

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.

Glib V Baryshnikov (GV)

Division of Theoretical Chemistry and Biology School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

Zhongyu Li (Z)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Man Zhang (M)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Shen Shen (S)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Hans Ågren (H)

Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.

Liangliang Zhu (L)

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Classifications MeSH