Acute kidney injury in the critically ill: an updated review on pathophysiology and management.
Acute kidney injury
Biomarkers
Blood pressure management
Diagnosis
Fluid therapy
Heterogeneity
Long-term consequences
Machine learning
Nephrotoxicity
Organ cross-talk
Pathophysiology
Phenotypes
Vasopressor
Journal
Intensive care medicine
ISSN: 1432-1238
Titre abrégé: Intensive Care Med
Pays: United States
ID NLM: 7704851
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
02
03
2021
accepted:
04
06
2021
pubmed:
3
7
2021
medline:
10
8
2021
entrez:
2
7
2021
Statut:
ppublish
Résumé
Acute kidney injury (AKI) is now recognized as a heterogeneous syndrome that not only affects acute morbidity and mortality, but also a patient's long-term prognosis. In this narrative review, an update on various aspects of AKI in critically ill patients will be provided. Focus will be on prediction and early detection of AKI (e.g., the role of biomarkers to identify high-risk patients and the use of machine learning to predict AKI), aspects of pathophysiology and progress in the recognition of different phenotypes of AKI, as well as an update on nephrotoxicity and organ cross-talk. In addition, prevention of AKI (focusing on fluid management, kidney perfusion pressure, and the choice of vasopressor) and supportive treatment of AKI is discussed. Finally, post-AKI risk of long-term sequelae including incident or progression of chronic kidney disease, cardiovascular events and mortality, will be addressed.
Identifiants
pubmed: 34213593
doi: 10.1007/s00134-021-06454-7
pii: 10.1007/s00134-021-06454-7
pmc: PMC8249842
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
835-850Informations de copyright
© 2021. The Author(s).
Références
Disease K (2012) Improving global outcomes (KDIGO) acute kidney injury work group (2012) KDIGO clinical practice guidelines AKI: AKI definition. Kidney Int Supplements 2(1):19–36
doi: 10.1038/kisup.2011.32
Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM et al (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14(10):607–625
pubmed: 30135570
doi: 10.1038/s41581-018-0052-0
pmcid: 30135570
James MT, Bhatt M, Pannu N, Tonelli M (2020) Long-term outcomes of acute kidney injury and strategies for improved care. Nat Rev Nephrol 16(4):193–205
pubmed: 32051567
doi: 10.1038/s41581-019-0247-z
pmcid: 32051567
Kellum JA, Prowle JR (2018) Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol 14(4):217–230
pubmed: 29355173
doi: 10.1038/nrneph.2017.184
pmcid: 29355173
Schetz M, Schortgen F (2017) Ten shortcomings of the current definition of AKI. Intensive Care Med 43(6):911–913
pubmed: 28220225
doi: 10.1007/s00134-017-4715-2
pmcid: 28220225
Priyanka P, Zarbock A, Izawa J, Gleason TG, Renfurm RW, Kellum JA (2020) The impact of acute kidney injury by serum creatinine or urine output criteria on major adverse kidney events in cardiac surgery patients. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2019.11.137
doi: 10.1016/j.jtcvs.2019.11.137
pubmed: 32033818
pmcid: 32033818
Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G (2015) Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol 26(9):2231–2238
pubmed: 25568178
pmcid: 4552117
doi: 10.1681/ASN.2014070724
Ronco C, Bellomo R, Kellum J (2017) Understanding renal functional reserve. Intensive Care Med 43(6):917–920
pubmed: 28213622
doi: 10.1007/s00134-017-4691-6
pmcid: 28213622
Chen S (2013) Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol 24(6):877–888
pubmed: 23704286
doi: 10.1681/ASN.2012070653
pmcid: 23704286
Schneider AG, Molitoris BA (2020) Real-time glomerular filtration rate: improving sensitivity, accuracy and prognostic value in acute kidney injury. Curr Opin Crit Care 26(6):549–555
pubmed: 33002974
doi: 10.1097/MCC.0000000000000770
pmcid: 33002974
Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3(10):e2019209.
Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical care (London, England) 17(1):R25
pmcid: 4057242
doi: 10.1186/cc12503
Hoste EA, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD et al (2014) Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transpl 29(11):2054–2061
doi: 10.1093/ndt/gfu292
Su LJ, Li YM, Kellum JA, Peng ZY (2018) Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis. Br J Anaesth 121(2):350–357
pubmed: 30032873
doi: 10.1016/j.bja.2018.02.069
pmcid: 30032873
Zhang D, Yuan Y, Guo L, Wang Q (2019) Comparison of urinary TIMP-2 and IGFBP7 cut-offs to predict acute kidney injury in critically ill patients: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 98(26):e16232
doi: 10.1097/MD.0000000000016232
Albert C, Zapf A, Haase M, Rover C, Pickering JW, Albert A, et al. (2020) Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis 76(6):826–41 e1.
Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J et al (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43(11):1551–1561
pubmed: 28110412
pmcid: 5633630
doi: 10.1007/s00134-016-4670-3
Göcze I, Jauch D, Götz M, Kennedy P, Jung B, Zeman F et al (2018) Biomarker-guided Intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg 267(6):1013–1020
pubmed: 28857811
doi: 10.1097/SLA.0000000000002485
pmcid: 28857811
Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S et al (2018) Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg 105(4):1094–1101
pubmed: 29382510
doi: 10.1016/j.athoracsur.2017.12.034
pmcid: 29382510
Husain-Syed F, Ferrari F, Sharma A, Hinna Danesi T, Bezerra P, Lopez-Giacoman S et al (2019) Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol Dialysis Transpl 34(2):308–317
doi: 10.1093/ndt/gfy227
Hoste EA, Kashani K, Gibney N, Wilson FP, Ronco C, Goldstein SL et al (2016) Impact of electronic-alerting of acute kidney injury: workgroup statements from the 15(th) ADQI Consensus Conference. Can J Kidney Health Dis 3:10
pubmed: 26925246
pmcid: 4768416
doi: 10.1186/s40697-016-0101-1
Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA (2018) Clinical decision support for in-hospital AKI. J Am Soc Nephrol 29(2):654–660
pubmed: 29097621
doi: 10.1681/ASN.2017070765
pmcid: 29097621
Colpaert K, Hoste EA, Steurbaut K, Benoit D, Van Hoecke S, De Turck F et al (2012) Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit Care Med 40(4):1164–1170
pubmed: 22067631
doi: 10.1097/CCM.0b013e3182387a6b
pmcid: 22067631
De Vlieger G, Kashani K, Meyfroidt G (2020) Artificial intelligence to guide management of acute kidney injury in the ICU: a narrative review. Curr Opin Crit Care 26(6):563–573
pubmed: 33027147
doi: 10.1097/MCC.0000000000000775
pmcid: 33027147
Gameiro J, Branco T, Lopes JA (2020) Artificial intelligence in acute kidney injury risk prediction. J Clin Med. 9(3):678. https://doi.org/10.3390/jcm9030678
doi: 10.3390/jcm9030678
pmcid: 7141311
Flechet M, Guiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I et al (2017) AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil gelatinase-associated lipocalin. Intensive Care Med 43(6):764–773
pubmed: 28130688
doi: 10.1007/s00134-017-4678-3
pmcid: 28130688
Koyner JL, Carey KA, Edelson DP, Churpek MM (2018) The development of a machine learning inpatient acute kidney injury prediction model. Crit Care Med 46(7):1070–1077
pubmed: 29596073
doi: 10.1097/CCM.0000000000003123
pmcid: 29596073
Chiofolo C, Chbat N, Ghosh E, Eshelman L, Kashani K (2019) Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin Proc 94(5):783–792
pubmed: 31054606
doi: 10.1016/j.mayocp.2019.02.009
pmcid: 31054606
Churpek MM, Carey KA, Edelson DP, Singh T, Astor BC, Gilbert ER et al (2020) Internal and external validation of a machine learning risk score for acute kidney injury. JAMA Netw Open 3(8):e2012892
pubmed: 32780123
pmcid: 7420241
doi: 10.1001/jamanetworkopen.2020.12892
Chaudhary K, Vaid A, Duffy A, Paranjpe I, Jaladanki S, Paranjpe M et al (2020) Utilization of deep learning for subphenotype identification in sepsis-associated acute kidney injury. Clin J Am Soc Nephrol 15(11):1557–1565
pubmed: 33033164
doi: 10.2215/CJN.09330819
pmcid: 33033164
Wiersema R, Jukarainen S, Vaara ST, Poukkanen M, Lakkisto P, Wong H et al (2020) Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Critical care (London, England) 24(1):150
doi: 10.1186/s13054-020-02866-x
Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM et al (2017) Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 13(4):241–257
pubmed: 28239173
doi: 10.1038/nrneph.2017.2
pmcid: 28239173
Pons B, Lautrette A, Oziel J, Dellamonica J, Vermesch R, Ezingeard E et al (2013) Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study. Critical care (London, England) 17(2):R56
doi: 10.1186/cc12582
Darmon M, Bourmaud A, Reynaud M, Rouleau S, Meziani F, Boivin A et al (2018) Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study. Intensive Care Med 44(11):1904–1913
pubmed: 30291377
doi: 10.1007/s00134-018-5386-3
pmcid: 30291377
Coca SG, Nadkarni GN, Garg AX, Koyner J, Thiessen-Philbrook H, McArthur E et al (2016) First post-operative urinary kidney injury biomarkers and association with the duration of AKI in the TRIBE-AKI Cohort. PLoS ONE 11(8):e0161098
pubmed: 27537050
pmcid: 4990204
doi: 10.1371/journal.pone.0161098
Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K et al (2014) Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 9(3):e93460
pubmed: 24675717
pmcid: 3968141
doi: 10.1371/journal.pone.0093460
Legrand M, Jacquemod A, Gayat E, Collet C, Giraudeaux V, Launay JM et al (2015) Failure of renal biomarkers to predict worsening renal function in high-risk patients presenting with oliguria. Intensive Care Med 41(1):68–76
pubmed: 25465906
doi: 10.1007/s00134-014-3566-3
Titeca-Beauport D, Daubin D, Van Vong L, Belliard G, Bruel C, Alaya S et al (2020) Urine cell cycle arrest biomarkers distinguish poorly between transient and persistent AKI in early septic shock: a prospective, multicenter study. Critical care (London, England) 24(1):280
doi: 10.1186/s13054-020-02984-6
Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M et al (2020) Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med 46(5):943–953
pubmed: 32025755
pmcid: 7210248
doi: 10.1007/s00134-019-05919-0
Dewitte A, Joannes-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P et al (2015) Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol 10(11):1900–1910
pubmed: 26342047
pmcid: 4633802
doi: 10.2215/CJN.12651214
Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD et al (2015) Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol 26(8):2023–2031
pubmed: 25655065
pmcid: 4520172
doi: 10.1681/ASN.2014060535
Chen JJ, Chang CH, Huang YT, Kuo G (2020) Furosemide stress test as a predictive marker of acute kidney injury progression or renal replacement therapy: a systemic review and meta-analysis. Critical care (London, England) 24(1):202
pmcid: 7206785
doi: 10.1186/s13054-020-02912-8
Barasch J, Zager R, Bonventre JV (2017) Acute kidney injury: a problem of definition. Lancet 389(10071):779–781
pubmed: 28248160
pmcid: 5460771
doi: 10.1016/S0140-6736(17)30543-3
Xu K, Rosenstiel P, Paragas N, Hinze C, Gao X, Huai Shen T et al (2017) Unique transcriptional programs identify subtypes of AKI. J Am Soc Nephrol 28(6):1729–1740
pubmed: 28028135
doi: 10.1681/ASN.2016090974
pmcid: 28028135
Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K (2015) Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int 88(4):734–744
pubmed: 26061546
pmcid: 4589440
doi: 10.1038/ki.2015.164
Garofalo AM, Lorente-Ros M, Goncalvez G, Carriedo D, Ballén-Barragán A, Villar-Fernández A et al (2019) Histopathological changes of organ dysfunction in sepsis. Intensive Care Med Exp 7(Suppl 1):45
pubmed: 31346833
pmcid: 6658642
doi: 10.1186/s40635-019-0236-3
Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH et al (2018) Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation 137(19):2016–2028
pubmed: 29352071
pmcid: 6066176
doi: 10.1161/CIRCULATIONAHA.117.030112
Rao VS, Ahmad T, Brisco-Bacik MA, Bonventre JV, Wilson FP, Siew ED et al (2019) Renal effects of intensive volume removal in heart failure patients with preexisting worsening renal function. Circ Heart Fail 2(6):e005552
Yoshioka K, Matsue Y, Okumura T, Kida K, Oishi S, Akiyama E et al (2020) Impact of brain natriuretic peptide reduction on the worsening renal function in patients with acute heart failure. PLoS ONE 15(6):e0235493
pubmed: 32589688
pmcid: 7319326
doi: 10.1371/journal.pone.0235493
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96(5):1083–1099
pubmed: 31443997
pmcid: 6920048
doi: 10.1016/j.kint.2019.05.026
Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock (Augusta, Ga) 41(1):3–11
doi: 10.1097/SHK.0000000000000052
Radi ZA (2018) Immunopathogenesis of Acute Kidney Injury. Toxicol Pathol 46(8):930–943
pubmed: 30282524
doi: 10.1177/0192623318799976
pmcid: 30282524
Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J et al (2018) De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nat Med 24(9):1351–1359
pubmed: 30127395
doi: 10.1038/s41591-018-0138-z
pmcid: 30127395
Kellum JA, Chawla LS (2016) Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant 31(1):16–22
pubmed: 26044835
doi: 10.1093/ndt/gfv130
pmcid: 26044835
Hayek SS, Leaf DE, Samman Tahhan A, Raad M, Sharma S, Waikar SS et al (2020) Soluble urokinase receptor and acute kidney injury. N Engl J Med 382(5):416–426
pubmed: 31995687
pmcid: 7065830
doi: 10.1056/NEJMoa1911481
Schunk SJ, Zarbock A, Meersch M, Kullmar M, Kellum JA, Schmit D et al (2019) Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study. Lancet (London, England) 394(10197):488–496
doi: 10.1016/S0140-6736(19)30769-X
Bhatraju PK, Zelnick LR, Herting J, Katz R, Mikacenic C, Kosamo S et al (2019) Identification of acute kidney injury subphenotypes with differing molecular signatures and responses to vasopressin therapy. Am J Respir Crit Care Med 199(7):863–872
pubmed: 30334632
pmcid: 6444649
doi: 10.1164/rccm.201807-1346OC
Bhatraju PK, Cohen M, Nagao RJ, Morrell ED, Kosamo S, Chai XY et al (2020) Genetic variation implicates plasma angiopoietin-2 in the development of acute kidney injury sub-phenotypes. BMC Nephrol 21(1):284
pubmed: 32680471
pmcid: 7368773
doi: 10.1186/s12882-020-01935-1
Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney international. 2020;98(2):294–309.
McDonald JS, McDonald RJ, Williamson EE, Kallmes DF, Kashani K (2017) Post-contrast acute kidney injury in intensive care unit patients: a propensity score-adjusted study. Intensive Care Med 43(6):774–784
pubmed: 28213620
doi: 10.1007/s00134-017-4699-y
pmcid: 28213620
Hinson JS, Al Jalbout N, Ehmann MR, Klein EY (2019) Acute kidney injury following contrast media administration in the septic patient: a retrospective propensity-matched analysis. J Crit Care 51:111–116
pubmed: 30798098
doi: 10.1016/j.jcrc.2019.02.003
pmcid: 30798098
Miyamoto Y, Iwagami M, Aso S, Yasunaga H, Matsui H, Fushimi K et al (2019) Association between intravenous contrast media exposure and non-recovery from dialysis-requiring septic acute kidney injury: a nationwide observational study. Intensive Care Med 45(11):1570–1579
pubmed: 31451861
doi: 10.1007/s00134-019-05755-2
pmcid: 31451861
Rouve E, Lakhal K, Salmon Gandonnière C, Jouan Y, Bodet-Contentin L, Ehrmann S (2018) Lack of impact of iodinated contrast media on kidney cell-cycle arrest biomarkers in critically ill patients. BMC Nephrol 19(1):308
pubmed: 30400873
pmcid: 6219088
doi: 10.1186/s12882-018-1091-2
Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E et al (2017) Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the working group on prevention, AKI section, European society of intensive care medicine. Intensive Care Med 43(6):730–749
pubmed: 28577069
pmcid: 5487598
doi: 10.1007/s00134-017-4832-y
Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ et al (2020) Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the american college of radiology and the national kidney foundation. Radiology 294(3):660–668
pubmed: 31961246
doi: 10.1148/radiol.2019192094
pmcid: 31961246
Timal RJ, Kooiman J, Sijpkens YWJ, de Vries JPM, Verberk-Jonkers I, Brulez HFH et al (2020) Effect of no prehydration vs sodium bicarbonate prehydration prior to contrast-enhanced computed tomography in the prevention of postcontrast acute kidney injury in adults with chronic kidney disease: the kompas randomized clinical trial. JAMA Intern Med 180(4):533–541
pubmed: 32065601
pmcid: 7042862
doi: 10.1001/jamainternmed.2019.7428
Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS et al (2018) Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 378(7):603–614
pubmed: 29130810
doi: 10.1056/NEJMoa1710933
pmcid: 29130810
Arnaud FCS, Libório AB (2020) Attributable nephrotoxicity of vancomycin in critically ill patients: a marginal structural model study. J Antimicrob Chemother 75(4):1031–1037
pubmed: 31904834
doi: 10.1093/jac/dkz520
pmcid: 31904834
Tsutsuura M, Moriyama H, Kojima N, Mizukami Y, Tashiro S, Osa S et al (2021) The monitoring of vancomycin: a systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect Dis 21(1):153
pubmed: 33549035
pmcid: 7866743
doi: 10.1186/s12879-021-05858-6
Covert KL, Knoetze D, Cole M, Lewis P (2020) Vancomycin plus piperacillin/tazobactam and acute kidney injury risk: a review of the literature. J Clin Pharm Ther 45(6):1253–1263
pubmed: 32810312
doi: 10.1111/jcpt.13249
pmcid: 32810312
Selby AR, Hall RG, 2nd. Utilizing the Patient Care Process to Minimize the Risk of Vancomycin-Associated Nephrotoxicity. J Clin Med. 2019;8(6).
Picard W, Bazin F, Clouzeau B, Bui HN, Soulat M, Guilhon E et al (2014) Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob Agents Chemother 58(12):7468–7474
pubmed: 25288085
pmcid: 4249539
doi: 10.1128/AAC.03750-14
Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L, Steele VR, et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect. 2021.
Sisay M, Hagos B, Edessa D, Tadiwos Y, Mekuria AN (2021) Polymyxin-induced nephrotoxicity and its predictors: a systematic review and meta-analysis of studies conducted using RIFLE criteria of acute kidney injury. Pharmacol Res 163:105328
pubmed: 33276108
doi: 10.1016/j.phrs.2020.105328
pmcid: 33276108
Joannidis M, Forni LG, Klein SJ, Honore PM, Kashani K, Ostermann M et al (2020) Lung-kidney interactions in critically ill patients: consensus report of the acute disease quality initiative (ADQI) 21 workgroup. Intensive Care Med 46(4):654–672
pubmed: 31820034
doi: 10.1007/s00134-019-05869-7
pmcid: 31820034
Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL et al (2019) Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American heart association. Circulation 139(16):e840–e878
pubmed: 30852913
doi: 10.1161/CIR.0000000000000664
pmcid: 30852913
Depret F, Prud’homme M, Legrand M (2017) A role of remote organs effect in acute kidney injury outcome. Nephron 137(4):273–276
pubmed: 28586768
doi: 10.1159/000476077
pmcid: 28586768
Lee SA, Cozzi M, Bush EL, Rabb H (2018) Distant organ dysfunction in acute kidney injury: a review. Am J Kidney Dis 72(6):846–856
pubmed: 29866457
pmcid: 6252108
doi: 10.1053/j.ajkd.2018.03.028
Singbartl K, Formeck CL, Kellum JA (2019) Kidney-immune system crosstalk in AKI. Semin Nephrol 39(1):96–106
pubmed: 30606411
doi: 10.1016/j.semnephrol.2018.10.007
pmcid: 30606411
Thakar CV, Yared JP, Worley S, Cotman K, Paganini EP (2003) Renal dysfunction and serious infections after open-heart surgery. Kidney Int 64(1):239–246
pubmed: 12787415
doi: 10.1046/j.1523-1755.2003.00040.x
pmcid: 12787415
Liaño F, Junco E, Pascual J, Madero R, Verde E (1998) The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The madrid acute renal failure study group. Kidney Int Suppl 66:S16-24
pubmed: 9580541
pmcid: 9580541
Woodrow G, Turney JH (1992) Cause of death in acute renal failure. Nephrol Dial Transpl 7(3):230–234
doi: 10.1093/oxfordjournals.ndt.a092111
Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F et al (2019) Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4(6):717–732
pubmed: 31709320
pmcid: 6834958
doi: 10.1016/j.jacbts.2019.06.005
Hassoun HT, Lie ML, Grigoryev DN, Liu M, Tuder RM, Rabb H (2009) Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol 297(1):F125–F137
pubmed: 19403643
pmcid: 2711715
doi: 10.1152/ajprenal.90666.2008
Girling BJ, Channon SW, Haines RW, Prowle JR (2020) Acute kidney injury and adverse outcomes of critical illness: correlation or causation? Clin Kidney J 13(2):133–141
pubmed: 32296515
doi: 10.1093/ckj/sfz158
pmcid: 32296515
Tanaka S, Okusa MD (2020) Crosstalk between the nervous system and the kidney. Kidney Int 97(3):466–476
pubmed: 32001065
doi: 10.1016/j.kint.2019.10.032
pmcid: 32001065
Ostermann M, Liu K, Kashani K (2019) Fluid management in acute kidney injury. Chest 156(3):594–603
pubmed: 31002784
doi: 10.1016/j.chest.2019.04.004
pmcid: 31002784
Gambardella I, Gaudino M, Ronco C, Lau C, Ivascu N, Girardi LN (2016) Congestive kidney failure in cardiac surgery: the relationship between central venous pressure and acute kidney injury. Interact Cardiovasc Thorac Surg 23(5):800–805
pubmed: 27422971
doi: 10.1093/icvts/ivw229
pmcid: 27422971
Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC et al (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17(6):R278
pubmed: 24289206
pmcid: 4056656
doi: 10.1186/cc13133
Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354(24):2564–2575
pubmed: 16714767
doi: 10.1056/NEJMoa062200
pmcid: 16714767
Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D et al (2018) Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med 378(24):2263–2274
pubmed: 29742967
doi: 10.1056/NEJMoa1801601
pmcid: 29742967
Vaara ST, Ostermann M, Bitker L, Schneider A, Poli E, Hoste E, et al. Restrictive fluid management versus usual care in acute kidney injury (REVERSE-AKI): a pilot randomized controlled feasibility trial. Intensive Care Med. 2021.
Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V et al (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42(11):1695–1705
pubmed: 27686349
doi: 10.1007/s00134-016-4500-7
pmcid: 27686349
Macdonald SPJ, Keijzers G, Taylor DM, Kinnear F, Arendts G, Fatovich DM et al (2018) Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care Med 44(12):2070–2078
pubmed: 30382308
doi: 10.1007/s00134-018-5433-0
pmcid: 30382308
Corl KA, Prodromou M, Merchant RC, Gareen I, Marks S, Banerjee D et al (2019) The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med 47(7):951–959
pubmed: 30985449
pmcid: 6579683
doi: 10.1097/CCM.0000000000003779
Agrinier N, Monnier A, Argaud L, Bemer M, Virion JM, Alleyrat C et al (2019) Effect of fluid balance control in critically ill patients: Design of the stepped wedge trial POINCARE-2. Contemp Clin Trials 83:109–116
pubmed: 31260794
doi: 10.1016/j.cct.2019.06.020
pmcid: 31260794
Brown RM, Wang L, Coston TD, Krishnan NI, Casey JD, Wanderer JP et al (2019) Balanced crystalloids versus saline in sepsis A secondary analysis of the SMART clinical trial. Am J Respir Crit Care Med 200(12):1487–1495
pubmed: 31454263
pmcid: 6909845
doi: 10.1164/rccm.201903-0557OC
Raimundo M, Crichton S, Syed Y, Martin JR, Beale R, Treacher D et al (2015) Low systemic oxygen delivery and bp and risk of progression of early AKI. Clin J Am Soc Nephrol 10(8):1340–1349
pubmed: 26209157
pmcid: 4527018
doi: 10.2215/CJN.02780314
Kellum JA, Chawla LS, Keener C, Singbartl K, Palevsky PM, Pike FL et al (2016) The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med 193(3):281–287
pubmed: 26398704
pmcid: 4803059
doi: 10.1164/rccm.201505-0995OC
Asfar P, Radermacher P, Ostermann M (2018) MAP of 65: target of the past? Intensive Care Med 44(9):1551–1552
pubmed: 30003302
doi: 10.1007/s00134-018-5292-8
pmcid: 30003302
Lamontagne F, Richards-Belle A, Thomas K, Harrison DA, Sadique MZ, Grieve RD et al (2020) Effect of reduced exposure to vasopressors on 90-day mortality in older critically Ill patients with vasodilatory hypotension: a randomized clinical trial. JAMA 323(10):938–949
pubmed: 32049269
pmcid: 7064880
doi: 10.1001/jama.2020.0930
Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370(17):1583–1593
pubmed: 24635770
doi: 10.1056/NEJMoa1312173
pmcid: 24635770
Futier E, Lefrant JY, Guinot PG, Godet T, Lorne E, Cuvillon P et al (2017) Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318(14):1346–1357
pubmed: 28973220
pmcid: 5710560
doi: 10.1001/jama.2017.14172
Moman RN, Ostby SA, Akhoundi A, Kashyap R, Kashani K (2018) Impact of individualized target mean arterial pressure for septic shock resuscitation on the incidence of acute kidney injury: a retrospective cohort study. Ann Intensive Care 8(1):124
pubmed: 30535664
pmcid: 6288098
doi: 10.1186/s13613-018-0468-5
Ostermann M, Hall A, Crichton S (2017) Low mean perfusion pressure is a risk factor for progression of acute kidney injury in critically ill patients—a retrospective analysis. BMC Nephrol 18(1):151
pubmed: 28468613
pmcid: 5415805
doi: 10.1186/s12882-017-0568-8
Wong BT, Chan MJ, Glassford NJ, Martensson J, Bion V, Chai SY et al (2015) Mean arterial pressure and mean perfusion pressure deficit in septic acute kidney injury. J Crit Care 30(5):975–981
pubmed: 26015150
doi: 10.1016/j.jcrc.2015.05.003
pmcid: 26015150
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43(3):304–377
pubmed: 28101605
doi: 10.1007/s00134-017-4683-6
pmcid: 28101605
Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Laderchi A et al (2008) Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care 12(6):R143
pubmed: 19017409
pmcid: 2646303
doi: 10.1186/cc7121
Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M et al (2016) Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA 316(5):509–518
pubmed: 27483065
doi: 10.1001/jama.2016.10485
pmcid: 27483065
Nagendran M, Russell JA, Walley KR, Brett SJ, Perkins GD, Hajjar L et al (2019) Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med 45(6):844–855
pubmed: 31062052
doi: 10.1007/s00134-019-05620-2
pmcid: 31062052
Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA et al (2017) Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology 126(1):85–93
pubmed: 27841822
doi: 10.1097/ALN.0000000000001434
pmcid: 27841822
Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H et al (2017) Angiotensin II for the treatment of vasodilatory shock. N Engl J Med 377(5):419–430
pubmed: 28528561
doi: 10.1056/NEJMoa1704154
pmcid: 28528561
Tumlin JA, Murugan R, Deane AM, Ostermann M, Busse LW, Ham KR et al (2018) Outcomes in patients with vasodilatory shock and renal replacement therapy treated with intravenous angiotensin II. Crit Care Med 46(6):949–957
pubmed: 29509568
pmcid: 5959265
doi: 10.1097/CCM.0000000000003092
Kane-Gill SL, Meersch M, Bell M (2020) Biomarker-guided management of acute kidney injury. Curr Opin Crit Care 26(6):556–562
pubmed: 33027146
doi: 10.1097/MCC.0000000000000777
pmcid: 33027146
Klein SJ, Brandtner AK, Lehner GF, Ulmer H, Bagshaw SM, Wiedermann CJ et al (2018) Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 44(3):323–336
pubmed: 29541790
pmcid: 5861176
doi: 10.1007/s00134-018-5126-8
Lumlertgul N, Peerapornratana S, Trakarnvanich T, Pongsittisak W, Surasit K, Chuasuwan A et al (2018) Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Critical care (London, England) 22(1):101
doi: 10.1186/s13054-018-2021-1
Pickkers P, Mehta RL, Murray PT, Joannidis M, Molitoris BA, Kellum JA et al (2018) Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury: a randomized clinical trial. JAMA 320(19):1998–2009
pubmed: 30357272
pmcid: 6248164
doi: 10.1001/jama.2018.14283
Côté JM, Murray PT, Rosner MH (2020) New drugs for acute kidney injury. Curr Opin Crit Care 26(6):525–535
pubmed: 33027145
doi: 10.1097/MCC.0000000000000778
pmcid: 33027145
Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H et al (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315(20):2190–2199
pubmed: 27209269
doi: 10.1001/jama.2016.5828
pmcid: 27209269
Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D et al (2020) Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med 383(3):240–251
pubmed: 32668114
doi: 10.1056/NEJMoa2000741
pmcid: 32668114
Gaudry S, Hajage D, Benichou N, Chaïbi K, Barbar S, Zarbock A et al (2020) Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet 395(10235):1506–1515
pubmed: 32334654
doi: 10.1016/S0140-6736(20)30531-6
pmcid: 32334654
Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E et al (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375(2):122–133
pubmed: 27181456
doi: 10.1056/NEJMoa1603017
pmcid: 27181456
Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyere R et al (2018) Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379(15):1431–1442
pubmed: 30304656
doi: 10.1056/NEJMoa1803213
pmcid: 30304656
Gaudry S, Hajage D, Martin-Lefevre L, Lebbah S, Louis G, Moschietto S et al (2021) Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet (London, England) 397(10281):1293–1300
doi: 10.1016/S0140-6736(21)00350-0
Ostermann M, Lumlertgul N (2021) Wait and see for acute dialysis: but for how long? Lancet (London, England) 397(10281):1241–1243
doi: 10.1016/S0140-6736(21)00466-9
Ikizler TA, Parikh CR, Himmelfarb J, Chinchilli VM, Liu KD, Coca SG et al (2021) A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascular events, and death. Kidney Int 99(2):456–465
pubmed: 32707221
doi: 10.1016/j.kint.2020.06.032
pmcid: 32707221
Bhatraju PK, Zelnick LR, Chinchilli VM, Moledina DG, Coca SG, Parikh CR et al (2020) Association between early recovery of kidney function after acute kidney injury and long-term clinical outcomes. JAMA Netw Open 3(4):e202682
pubmed: 32282046
pmcid: 7154800
doi: 10.1001/jamanetworkopen.2020.2682
Fiorentino M, Tohme FA, Wang S, Murugan R, Angus DC, Kellum JA (2018) Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS ONE 13(6):e0198269
pubmed: 29870535
pmcid: 5988328
doi: 10.1371/journal.pone.0198269
Bansal N, Matheny ME, Greevy RA Jr, Eden SK, Perkins AM, Parr SK et al (2018) Acute kidney injury and risk of incident heart failure among US veterans. Am J Kidney Dis 71(2):236–245
pubmed: 29162339
doi: 10.1053/j.ajkd.2017.08.027
pmcid: 29162339
Mehta RL, Rabb H, Shaw AD, Singbartl K, Ronco C, McCullough PA et al (2013) Cardiorenal syndrome type 5: clinical presentation, pathophysiology and management strategies from the eleventh consensus conference of the Acute dialysis quality initiative (ADQI). Contrib Nephrol 182:174–194
pubmed: 23689662
doi: 10.1159/000349970
pmcid: 23689662
Parr SK, Matheny ME, Abdel-Kader K, Greevy RA Jr, Bian A, Fly J et al (2018) Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int 93(2):460–469
pubmed: 28927644
doi: 10.1016/j.kint.2017.07.007
pmcid: 28927644
Hsu CY, Chinchilli VM, Coca S, Devarajan P, Ghahramani N, Go AS et al (2020) Post-acute kidney injury proteinuria and subsequent kidney disease progression: the assessment, serial evaluation, and subsequent sequelae in acute kidney injury (ASSESS-AKI) study. JAMA Intern Med 180(3):402–410
pubmed: 31985750
pmcid: 6990681
doi: 10.1001/jamainternmed.2019.6390
Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11(5):264–276
pubmed: 25643664
pmcid: 4412815
doi: 10.1038/nrneph.2015.3
Silver SA, Goldstein SL, Harel Z, Harvey A, Rompies EJ, Adhikari NK et al (2015) Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can J Kidney Health Dis 2:36
pubmed: 26445676
pmcid: 4595050
doi: 10.1186/s40697-015-0036-y
Liu KD, Forni LG, Heung M, Wu VC, Kellum JA, Mehta RL et al (2020) Quality of care for acute kidney disease: current knowledge gaps and future directions. Kidney Int Rep 5(10):1634–1642
pubmed: 33102955
pmcid: 7569680
doi: 10.1016/j.ekir.2020.07.031
Kashani K, Rosner MH, Haase M, Lewington AJP, O’Donoghue DJ, Wilson FP et al (2019) Quality improvement goals for acute kidney injury. Clin J Am Soc Nephrol 14(6):941–953
pubmed: 31101671
pmcid: 6556737
doi: 10.2215/CJN.01250119
Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX et al (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83(5):901–908
pubmed: 23325077
doi: 10.1038/ki.2012.451
pmcid: 23325077
James MT, Pannu N, Hemmelgarn BR, Austin PC, Tan Z, McArthur E et al (2017) Derivation and external validation of prediction models for advanced chronic kidney disease following acute kidney injury. JAMA 318(18):1787–1797
pubmed: 29136443
pmcid: 5820711
doi: 10.1001/jama.2017.16326
Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, et al. (2021) Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 131(3).
Gayat E, Hollinger A, Cariou A, Deye N, Vieillard-Baron A, Jaber S et al (2018) Impact of angiotensin-converting enzyme inhibitors or receptor blockers on post-ICU discharge outcome in patients with acute kidney injury. Intensive Care Med 44(5):598–605
pubmed: 29766216
doi: 10.1007/s00134-018-5160-6
pmcid: 29766216
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383(15):1436–1446
pubmed: 32970396
doi: 10.1056/NEJMoa2024816
pmcid: 32970396
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P et al (2020) Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383(23):2219–2229
pubmed: 33264825
doi: 10.1056/NEJMoa2025845
pmcid: 33264825
Dai X, Zeng Z, Fu C, Zhang S, Cai Y, Chen Z (2015) Diagnostic value of neutrophil gelatinase-associated lipocalin, cystatin C, and soluble triggering receptor expressed on myeloid cells-1 in critically ill patients with sepsis-associated acute kidney injury. Critical care (London, England) 19:223
doi: 10.1186/s13054-015-0941-6
Delanaye P, Cavalier E, Morel J, Mehdi M, Maillard N, Claisse G et al (2014) Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol 15:9
pubmed: 24410757
pmcid: 3893362
doi: 10.1186/1471-2369-15-9
Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122
pubmed: 15327406
doi: 10.1111/j.1523-1755.2004.00861.x
pmcid: 15327406
Khorashadi M, Beunders R, Pickkers P, Legrand M (2020) Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron 144(12):655–661
pubmed: 32739920
doi: 10.1159/000509352
pmcid: 32739920
Martensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37(4):304–310
pubmed: 25170751
doi: 10.1159/000364937
pmcid: 25170751
Glassford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L et al (2013) The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. Intensive Care Med 39(10):1714–1724
pubmed: 23917325
doi: 10.1007/s00134-013-3040-7
pmcid: 23917325
Geng J, Qiu Y, Qin Z, Su B (2021) The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis. J Transl Med 19(1):105
pubmed: 33712052
pmcid: 7953563
doi: 10.1186/s12967-021-02776-8
Koyner JL, Garg AX, Shlipak MG, Patel UD, Sint K, Hong K et al (2013) Urinary cystatin C and acute kidney injury after cardiac surgery. Am J Kidney Dis 61(5):730–738
pubmed: 23332602
pmcid: 3627833
doi: 10.1053/j.ajkd.2012.12.006
Faubel S (2020) SuPAR: a potential predictive biomarker for acute kidney injury. Nat Rev Nephrol 16(7):375–376
pubmed: 32269303
doi: 10.1038/s41581-020-0276-7
pmcid: 32269303
Lin X, Yuan J, Zhao Y, Zha Y (2015) Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis. J Nephrol 28(1):7–16
pubmed: 24899123
doi: 10.1007/s40620-014-0113-9
pmcid: 24899123
Xu Y, Xie Y, Shao X, Ni Z, Mou S (2015) L-FABP: a novel biomarker of kidney disease. Clin Chim Acta 445:85–90
pubmed: 25797895
doi: 10.1016/j.cca.2015.03.017
pmcid: 25797895
De Loor J, Herck I, Francois K, Van Wesemael A, Nuytinck L, Meyer E et al (2017) Diagnosis of cardiac surgery-associated acute kidney injury: differential roles of creatinine, chitinase 3-like protein 1 and neutrophil gelatinase-associated lipocalin: a prospective cohort study. Ann Intensive Care 7(1):24
pubmed: 28251598
pmcid: 5332341
doi: 10.1186/s13613-017-0251-z
Hoste EA, Vaara ST, De Loor J, Haapio M, Nuytinck L, Demeyere K et al (2020) Urinary cell cycle arrest biomarkers and chitinase 3-like protein 1 (CHI3L1) to detect acute kidney injury in the critically ill: a post hoc laboratory analysis on the FINNAKI cohort. Critical care (London, England) 24(1):144
doi: 10.1186/s13054-020-02867-w
Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstadt H et al (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the elain randomized clinical trial. JAMA 315(20):2190–2199
pubmed: 27209269
doi: 10.1001/jama.2016.5828
pmcid: 27209269