Model-Based Wisdom of the Crowd for Sequential Decision-Making Tasks.

Balloon analogue risk task Bandit problems Bayesian graphical models Optimal stopping problems Wisdom of the crowd

Journal

Cognitive science
ISSN: 1551-6709
Titre abrégé: Cogn Sci
Pays: United States
ID NLM: 7708195

Informations de publication

Date de publication:
07 2021
Historique:
revised: 27 05 2021
received: 04 09 2020
accepted: 28 05 2021
entrez: 2 7 2021
pubmed: 3 7 2021
medline: 5 10 2021
Statut: ppublish

Résumé

We study the wisdom of the crowd in three sequential decision-making tasks: the Balloon Analogue Risk Task (BART), optimal stopping problems, and bandit problems. We consider a behavior-based approach, using majority decisions to determine crowd behavior and show that this approach performs poorly in the BART and bandit tasks. The key problem is that the crowd becomes progressively more extreme as the decision sequence progresses, because the diversity of opinion that underlies the wisdom of the crowd is lost. We also consider model-based approaches to each task. This involves inferring cognitive models for each individual based on their observed behavior, and using these models to predict what each individual would do in any possible task situation. We show that this approach performs robustly well for all three tasks and has the additional advantage of being able to generalize to new problems for which there are no behavioral data. We discuss potential applications of the model-based approach to real-world sequential decision problems and discuss how our approach contributes to the understanding of collective intelligence.

Identifiants

pubmed: 34213800
doi: 10.1111/cogs.13011
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13011

Informations de copyright

© 2021 Cognitive Science Society LLC.

Références

Banks, J., Olson, M., & Porter, D. (1997). An experimental analysis of the bandit problem. Economic Theory, 10, 55-77.
Bartlema, A., Lee, M. D., Wetzels, R., & Vanpaemel, W. (2014). A Bayesian hierarchical mixture approach to individual differences: Case studies in selective attention and representation in category learning. Journal of Mathematical Psychology, 59, 132-150.
Baumann, C., Gershman, S. J., Singmann, H., & von Helversen, B. (2020). A linear threshold model for optimal stopping behavior. Proceedings of the National Academy of Science, 117, 12750-12755.
Brenner, L. A., Koehler, D. J., Liberman, V., & Tversky, A. (1996). Overconfidence in probability and frequency judgments: A critical examination. Organizational Behavioral and Human Decision Processes, 65, 212-219.
Brooks, S. P., & Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
Brunswik, E. (1952). The conceptual framework of psychology. In International encyclopedia of unified science. Volume 1, Chapter 10. Chicago, IL: University of Chicago Press.
Busemeyer, J. R., & Wang, Y.-M. (2000). Model comparisons and model selections based on generalization criterion methodology. Journal of Mathematical Psychology, 44, 171-189.
Campbell, J., & Lee, M. D. (2006). The effect of feedback and financial reward on human performance solving “secretary” problems. In R. Sun (Ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp. 1068-1073). Mahwah, NJ: Erlbaum.
Christiansen, J. D. (2007). Prediction markets: Practical experiments in small markets and behaviors observed. The Journal of Prediction Markets, 1, 17-41.
Danileiko, I., & Lee, M. D. (2017). A model-based approach to the wisdom of the crowd in category learning. Cognitive Science, 42, 861-883.
Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441, 876-879.
Etz, A., & Vandekerckhove, J. (2018). Introduction to Bayesian inference for psychology. Psychonomic Bulletin & Review, 25, 5-34.
Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4, 282-296.
Gilbert, J. P., & Mosteller, F. (1966). Recognizing the maximum of a sequence. American Statistical Association Journal, 61, 35-73.
Goldstein, D. G., McAfee, R. P., Suri, S., & Wright, J. R. (2020). Learning when to stop searching. Management Science, 66, 1375-1394.
Guan, H. (2019). A cognitive modeling analysis of risk in sequential choice tasks (Unpublished doctoral dissertation). UC Irvine, Irvine, CA .
Guan, H., & Lee, M. D. (2018). The effect of goals and environments on human performance in optimal stopping problems. Decision, 5, 339-361.
Guan, H., Lee, M. D., & Vandekerckhove, J. (2015). A hierarchical cognitive threshold model of human decision making on different length optimal stopping problems. In D. C. Noelle & R. Dale (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 824-829). Austin, TX: Cognitive Science Society.
Guan, H., Stokes, R., Vandekerckhove, J., & Lee, M. D. (2020). A cognitive modeling analysis of risk in sequential choice tasks. Judgment and Decision Making, 15, 823-850.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Berlin, Germany: Springer Science & Business Media.
Herzog, S. M., Litvinova, A., Yahosseini, K. S., Tump, A. N., & Kurvers, R. H. J. M. (2019). The ecological rationality of the wisdom of crowds. In R. Hertwig, T. J. Pleskac, & T. Pachur (Eds.), The ecological rationality of the wisdom of crowds (pp. 245-262). Boston, MA: MIT Press.
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science, 14, 382-401.
Kaebling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.
Kaufmann, E., Reips, U.-D., & Wittmann, W. W. (2013). A critical meta-analysis of lens model studies in human judgment and decision-making. PloS ONE, 8, e83528.
Lauriola, M., Panno, A., Levin, I. P., & Lejuez, C. W. (2014). Individual differences in risky decision making: A meta-analysis of sensation seeking and impulsivity with the balloon analogue risk task. Journal of Behavioral Decision Making, 27, 20-36.
Lee, M. D. (2006). A hierarchical Bayesian model of human decision-making on an optimal stopping problem. Cognitive Science, 30, 555-580.
Lee, M. D. (2011). How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology, 55, 1-7.
Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), The Stevens' handbook of experimental psychology and cognitive neuroscience, volume 5: methodology (4th ed., chapt. 2, pp. 37-84). Hoboken, NJ: Wiley.
Lee, M. D., & Courey, K. A. (2021). Modeling optimal stopping in changing environments: A case study in mate selection. Computational Brain & Behavior, 4, 1-17.
Lee, M. D., & Danileiko, I. (2014). Using cognitive models to combine probability estimates. Judgment and Decision Making, 9, 259-273.
Lee, M. D., Steyvers, M., & Miller, B. J. (2014). A cognitive model for aggregating people's rankings. PLoS ONE, 9, e96431.
Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. Psychonomic Bulletin & Review, 25, 114-127.
Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge, UK: Cambridge University Press.
Lee, M. D., Zhang, S., Munro, M. N., & Steyvers, M. (2011a). Psychological models of human and optimal performance on bandit problems. Cognitive Systems Research, 12, 164-174.
Lee, M. D., Zhang, S., & Shi, J. (2011b). The wisdom of the crowd playing the price is right. Memory & Cognition, 39, 914-923.
Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, Strong, & Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: The balloon analogue risk task (BART). Journal of Experimental Psychology: Applied, 8, 75-84.
Lichtenstein, S., Fischoff, B., & Phillips, L. D. (1982). Calibration of probabilities: The state of the art to 1980. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 306-334). Cambridge, UK: Cambridge University Press.
Marshall, J. A., Kurvers, R. H., Krause, J., & Wolf, M. (2019). Quorums enable optimal pooling of independent judgements in biological systems. eLife, 8, e40368.
Matzke, D., Boehm, U., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part III: Parameter estimation in nonstandard models. Psychonomic Bulletin & Review, 25, 77-101.
Meyer, R. J., & Shi, Y. (1995). Sequential choice under ambiguity: Intuitive solutions to the armed-bandit problem. Management Science, 41, 817-834.
Miller, G. A., & Selfridge, J. A. (1950). Verbal context and the recall of meaningful material. American Journal of Psychology, 63, 176-185.
Olsson, H. (2014). Measuring overconfidence: Methodological problems and statistical artifacts. Journal of Business Research, 67, 1766-1770.
Pleskac, T. J. (2008). Decision making and learning while taking sequential risks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 167.
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria.
Prelec, D., Seung, H. S., & McCoy, J. (2017). A solution to the single-question crowd wisdom problem. Nature, 541, 532-535.
Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2011). Transitivity of preferences. Psychological Review, 118(1), 42.
Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 55, 527-535.
Seale, D. A., & Rapoport, A. (1997). Sequential decision making with relative ranks: An experimental investigation of the “secretary problem”. Organizational Behavior and Human Decision Processes, 69, 221-236.
Seale, D. A., & Rapoport, A. (2000). Optimal stopping behavior with relative ranks. Journal of Behavioral Decision Making, 13, 391-411.
Selker, R., Lee, M. D., & Iyer, R. (2017). Thurstonian cognitive models for aggregating top-n lists. Decision, 4, 87-101.
Speekenbrink, M., & Konstantinidis, E. (2015). Uncertainty and exploration in a restless bandit problem. Topics in Cognitive Science, 7, 351-367.
Steyvers, M., Lee, M. D., & Wagenmakers, E.-J. (2009). A Bayesian analysis of human decision making on bandit problems. Journal of Mathematical Psychology, 53, 168-179.
Surowiecki, J. (2004). The wisdom of crowds. New York, NY: Random House.
Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An introduction. Cambridge, MA: MIT Press.
Turner, B. M., Steyvers, M., Merkle, E. C., Budescu, D. V., & Wallsten, T. S. (2014). Forecast aggregation via recalibration. Machine Learning, 95, 261-289.
van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E.-J. (2011). Cognitive model decomposition of the BART: Assessment and application. Journal of Mathematical Psychology, 55, 94-105.
Vandekerckhove, J., Rouder, J. N., & Kruschke, J. K. (2018). Editorial: Bayesian methods for advancing psychological science. Psychonomic Bulletin & Review, 25, 1531-5320.
Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., et al,. (2018). Bayesian inference for psychology. part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 25, 35-57.
Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2005). Modeling behavior in a clinically diagnostic sequential risk-taking task. Psychological Review, 112, 862-880.
Yates, J. F. (1990). Judgment and decision making. Englewood Cliffs, NJ: Prentice-Hall.
Yi, S. K. M., Steyvers, M., & Lee, M. D. (2009). Modeling human performance in restless bandits using particle filters. Journal of Problem Solving, 2, 33-53.
Yi, S. K. M., Steyvers, M., Lee, M. D., & Dry, M. J. (2012). The wisdom of the crowd in combinatorial problems. Cognitive Science, 36, 452-470.
Zhang, H., & Maloney, L. T. (2012). Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action and cognition. Frontiers in Neuroscience, 6, 1-14.
Zhang, S., & Lee, M. D. (2010). Cognitive models and the wisdom of crowds: A case study using the bandit problem. In R. Catrambone & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 1118-1123). Austin, TX: Cognitive Science Society.
Zhou, R., Myung, J. I., & Pitt, M. A. (2020). The scaled target learning model: A novel computational model of the balloon analogue risk task. In S. Denison, M. Mack, Y. Xu, & B. Amstrong (Eds.), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (p. 2693). Austin, TX: Cognitive Science Society.

Auteurs

Bobby Thomas (B)

Department of Cognitive Sciences, University of California, Irvine.

Jeff Coon (J)

Department of Cognitive Sciences, University of California, Irvine.

Holly A Westfall (HA)

Department of Cognitive Sciences, University of California, Irvine.

Michael D Lee (MD)

Department of Cognitive Sciences, University of California, Irvine.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH