Application of peptide nucleic acid in electrochemical nucleic acid biosensors.
ATRP
RAFT
biosensor
nucleic acid
peptide nucleic acid
Journal
Biopolymers
ISSN: 1097-0282
Titre abrégé: Biopolymers
Pays: United States
ID NLM: 0372525
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
revised:
22
06
2021
received:
24
03
2021
accepted:
22
06
2021
pubmed:
3
7
2021
medline:
14
1
2022
entrez:
2
7
2021
Statut:
ppublish
Résumé
The early diagnosis of major diseases, such as malignant tumors, has always been an important field of research. Through screening, early detection of such diseases, and timely and effective treatment can significantly improve the survival rate of patients and reduce medical costs. Therefore, the development of a simple detection method with high sensitivity and strong specificity, and that is low cost is of great significance for the diagnosis and prognosis of the disease. Electrochemical DNA biosensing analysis is a technology based on Watson Crick base complementary pairing, which uses the capture probe of a known sequence to specifically recognize the target DNA and detect its concentration. Because of its advantages of low cost, simple operation, portability, and easy miniaturization, it has been widely researched and has become a cutting-edge topic in the field of biochemical analysis and precision medicine. However, the existing methods for electrochemical DNA biosensing analysis have some shortcomings, such as poor stability and specificity of capture probes, insufficient detection sensitivity, and long detection cycles. In this review, we focus on improving the sensitivity and practicability of electrochemical DNA biosensing analysis methods and summarize a series of research work carried out by using electrically neutral peptide nucleic acid as an immobilized capture probe.
Substances chimiques
Nucleic Acids
0
Peptide Nucleic Acids
0
DNA
9007-49-2
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23464Subventions
Organisme : National Natural Science Foundation of China
ID : 21890740
Organisme : National Natural Science Foundation of China
ID : 9195401
Organisme : National Natural Science Foundation of China
ID : 21890742
Organisme : National Natural Science Foundation of China
ID : 21974068
Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
W. Vercoutere, M. Akeson, Curr. Opin. Chem. Biol. 2002, 6, 816.
H. H. Thorp, Trends Biotechnol. 1998, 16, 117.
S. J. Salipante, D. R. Hoogestraat, D. J. SenGupta, D. Murphey, K. Panayides, E. Hamilton, I. Castañeda-Sánchez, J. Kennedy, P. W. Monsaas, L. Mendoza, K. Stephens, J. J. Dunn, B. T. Cookson, J. Clin. Microbiol. 2012, 50, 1480.
P. F. Thomsen, J. Kielgast, L. L. Iversen, C. Wiuf, M. Rasmussen, M. T. P. Gilbert, L. Orlando, E. Willerslev, Mol. Ecol. 2012, 21, 2565.
G. Chiti, G. Marrazza, M. Mascini, Anal. Chim. Acta 2001, 427, 155.
K. Kerman, M. Kobayashi, E. Tamiya, Meas. Sci. Technol. 2003, 15, R1.
H. Sun, Y. Qiu, Q. Liu, Q. Wang, Y. Huang, D. Wen, X. Zhang, Q. Liu, G. Liu, J. Kong, Biosens. Bioelectron. 2019, 131, 193.
H. J. Parab, C. Jung, J.-H. Lee, H. G. Park, Biosens. Bioelectron. 2010, 26, 667.
D. Santano, A. Urrutia, C. R. Zamarreño, I. D. Villar, IEEE Sens. J. 2020, 21, 1.
J. Peng, Q. Huang, W. Zhuge, Y. Liu, C. Zhang, W. Yang, G. Xiang, Biosens. Bioelectron. 2018, 106, 212.
J. Peng, Q. Huang, Y. Liu, P. Liu, C. Zhang, Sens. Actuators B 2019, 294, 157.
H.-L. Cai, Y. Yang, Y.-H. Zhang, C.-J. Zhou, C.-R. Guo, J. Liu, T.-L. Ren, Mod. Phys. Lett. B 2014, 28, 1450056.
H. Li, S. Xiao, D. Yao, M. H.-W. Lam, H. Liang, Chem. Commun. 2015, 51, 4670.
J. Y. Peng, C. T. Hou, X. X. Liu, H. B. Li, X. Y. Hu, Talanta 2011, 86, 227.
D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, Biosens. Bioelectron. 2001, 16, 121.
Ü. Anik, Y. Tepeli, M. Sayhi, J. Nsiri, M. F. Diouani, Analyst 2018, 143, 150.
S. Kumar, N. Verma, A. K. Singh, Sens. Actuators B 2017, 240, 248.
A. Sassolas, B. D. Leca-Bouvier, L. J. Blum, Chem. Rev. 2008, 108, 109.
G. Liu, R. Lao, L. Xu, Q. Xu, L. Li, M. Zhang, S. Song, C. Fan, Biosens. Bioelectron. 2013, 42, 516.
F. Le Floch, H.-A. Ho, P. Harding-Lepage, M. Bédard, R. Neagu-Plesu, M. Leclerc, Adv. Mater. 2005, 17, 1251.
J. Summerton, D. Weller, Antisense Nucleic Acid Drug Dev. 1997, 7, 187.
R. M. Hudziak, E. Barofsky, D. F. Barofsky, D. L. Weller, S.-B. Huang, D. D. Weller, Antisense Nucleic Acid Drug Dev. 1996, 6, 267.
C. Briones, M. Moreno, Anal. Bioanal. Chem. 2012, 402, 3071.
A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi, R. Kumar, M. Meldgaard, C. E. Olsen, J. Wengel, Tetrahedron 1998, 54, 3607.
B. Vester, J. Wengel, Biochemistry 2004, 43, 13233.
D. A. Braasch, D. R. Corey, Chem. Biol. 2001, 8, 1.
P. M. McTigue, R. J. Peterson, J. D. Kahn, Biochemistry 2004, 43, 5388.
R. Owczarzy, Y. You, C. L. Groth, A. V. Tataurov, Biochemistry 2011, 50, 9352.
Y. Han, F. An, J. Liu, J. Kong, X. Zhang, New J. Chem. 2020, 44, 20770.
H. Sun, J. Kong, Q. Wang, Q. Liu, X. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 27568.
H. Sun, Y. Qiu, Y. Lu, J. Kong, X. Zhang, Chem. Commun. 2020, 56, 6636.
H. Sun, W. Xu, B. Liu, Q. Liu, Q. Wang, L. Li, J. Kong, X. Zhang, Anal. Chem. 2019, 91, 9198.
C. Wang, J. Liu, J. Kong, X. Zhang, Anal. Chim. Acta 2020, 1136, 19.
Q. Liu, L. Jian, R. Liu, H. Yang, J. Kong, X. Zhang, Chem. Eur. J. 2020, 26, 1633.
M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, P. E. Nielsen, Nature 1993, 365, 566.
P. Nielsen, M. Egholm, R. Berg, O. Buchardt, Science 1991, 254, 1497.
F. P. Schwarz, S. Robinson, J. M. Butler, Nucleic Acids Res. 1999, 27, 4792.
J. Liu, L. Tiefenauer, S. Tian, P. E. Nielsen, W. Knoll, Anal. Chem. 2006, 78, 470.
J. Chun, T. Hla, K. R. Lynch, S. Spiegel, W. H. Moolenaar, Pharmacol. Rev. 2010, 62, 579.
K. I. Izvolsky, V. V. Demidov, P. E. Nielsen, M. D. Frank-Kamenetskii, Biochemistry 2000, 39, 10908.
B. Piro, V. Noël, S. Reisberg, in RNA and DNA Diagnostics (Eds: V. A. Erdmann, S. Jurga, J. Barciszewski), Springer International, Cham 2015, p. 47.
S. Cauteruccio, E. Licandro, M. Panigati, G. D'Alfonso, S. Maiorana, Coord. Chem. Rev. 2019, 386, 119.
P. Anstaett, G. Gasser, Chimia (Aarau) 2014, 68, 264.
H. Sun, L. Qian, J. Kong, X. Zhang, Sens. Actuators B 2021, 337, 129791.
H.-A. Joung, N.-R. Lee, S. K. Lee, J. Ahn, Y. B. Shin, H.-S. Choi, C.-S. Lee, S. Kim, M.-G. Kim, Anal. Chim. Acta 2008, 630, 168.
M. Kaisti, A. Kerko, E. Aarikka, P. Saviranta, Z. Boeva, T. Soukka, A. Lehmusvuori, Sci. Rep. 2017, 7, 15734.
A. Geiger, A. Lester, J. Kleiber, H. Ørum, Nucleosides Nucleotides 1998, 17, 1717.
M. Xu, P. Fu, S. Xing, Y. Zhao, C. Zhao, ChemBioChem 2020, 21, 2667.
S. O. Kelley, ACS Sensors 2017, 2, 193.
B. Liu, H. Sun, L. Li, J. Zhang, J. Kong, X. Zhang, Microchim. Acta 2019, 187, 35.
J. Li, L. Zhao, D. Wen, X. Li, H. Yang, D. Wang, J. Kong, Anal. Bioanal. Chem. 2020, 412, 4155.
Q. Hu, X. Deng, X. Yu, J. Kong, X. Zhang, Biosens. Bioelectron. 2015, 65, 71.
F. Liu, Q. Xu, W. Huang, Z. Zhang, G. Xiang, C. Zhang, C. Liang, H. Lian, J. Peng, Electrochim. Acta 2019, 295, 615.
J. Peng, C. Hou, X. Hu, Sens. Actuators B 2012, 169, 81.
X. Miao, X. Guo, Z. Xiao, L. Ling, Biosens. Bioelectron. 2014, 59, 54.
Y. Qian, C. Wang, F. Gao, Talanta 2014, 130, 33.
W. Wei, Q. Ni, Y. Pu, L. Yin, S. Liu, J. Electroanal. Chem. 2014, 714-715, 25.
C. Xu, H. Cai, P. He, Y. Fang, Analyst 2001, 126, 62.
J. Liu, J. Song, T. Qi, C. Zhang, J. Qu, Adv. Powder Technol. 2016, 27, 1.
C. Fang, H. Ji, W. Y. Karen, S. R. M. Rafei, Biosens. Bioelectron. 2011, 26, 2670.
M. Ali, R. Neumann, W. Ensinger, ACS Nano 2010, 4, 7267.
S. Xing, X. Xu, P. Fu, M. Xu, T. Gao, X. Zhang, C. Zhao, Colloids Surf. B 2019, 181, 333.
W. Xu, S. Xing, X. Xu, M. Xu, P. Fu, T. Gao, C. Zhao, ACS Omega 2018, 3, 17835.
J. Lee, I.-S. Park, E. Jung, Y. Lee, D.-H. Min, Biosens. Bioelectron. 2014, 62, 140.
P. Fu, S. Xing, M. Xu, Y. Zhao, C. Zhao, Sens. Actuators B 2020, 305, 127545.
P. Harding Lepage, R. Peytavi, M. G. Bergeron, M. Leclerc, Anal. Chem. 2011, 83, 8086.
Y. Wu, S. Liu, L. He, Anal. Chem. 2009, 81, 7015.
J.-S. Wang, K. Matyjaszewski, J. Am. Chem. Soc. 1995, 117, 5614.
J.-S. Wang, K. Matyjaszewski, Macromolecules 1995, 28, 7901.
Q. Hu, Q. Wang, G. Sun, J. Kong, X. Zhang, Anal. Chem. 2017, 89, 9253.
H. Tan, S. Yang, G. Shen, R. Yu, Z. Wu, Angew. Chem. Int. Ed. 2010, 49, 8608.
F. Patolsky, Y. Weizmann, I. Willner, J. Am. Chem. Soc. 2002, 124, 770.
G. Wu, N. Yang, T. Zhang, Z. Wang, X. Lu, J. Kang, Sens. Actuators B 2011, 160, 598.
A. Anastasaki, V. Nikolaou, F. Brandford-Adams, G. Nurumbetov, Q. Zhang, G. J. Clarkson, D. J. Fox, P. Wilson, K. Kempe, D. M. Haddleton, Chem. Commun. 2015, 51, 5626.
J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
Q. Hu, D. Han, S. Gan, Y. Bao, L. Niu, Anal. Chem. 2018, 90, 12207.
Q. Hu, J. Kong, D. Han, L. Niu, X. Zhang, ACS Sensors 2019, 4, 235.
W. Liu, L. Ma, Z. Guo, T. Liu, Y. Liu, D. Wang, J. Kong, Anal. Sci. 2020, 36, 681.