Probing the Role of Chirality in Phospholipid Membranes.
chirality
cholesterol
lipid divide
phospholipids stereochemistry
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
16 11 2021
16 11 2021
Historique:
revised:
04
07
2021
received:
14
05
2021
pubmed:
7
7
2021
medline:
22
2
2022
entrez:
6
7
2021
Statut:
ppublish
Résumé
Nucleotides, amino acids, sugars, and lipids are almost ubiquitously homochiral within individual cells on Earth. While oligonucleotides and proteins exist as one natural chirality throughout the tree of life, two stereoisomers of phospholipids have separately emerged in archaea and bacteria, an evolutionary divergence known as "the lipid divide". Within this review, we focus on the emergence of phospholipid homochirality and compare the stability of synthetic homochiral and heterochiral membranes in vitro. We discuss chemical probes designed to study the stereospecific interactions of lipid membranes in vitro. Overall, we aim to highlight studies that help elucidate the determinants of stereospecific interactions between lipids, peptides, and small molecule ligands. Continued work in understanding the drivers of favorable interactions between chiral molecules and biological membranes will lead to the design of increasingly selective chemical tools for bioorthogonal labeling of lipid membranes and safer membrane-associating pharmaceuticals.
Identifiants
pubmed: 34227722
doi: 10.1002/cbic.202100232
doi:
Substances chimiques
Phospholipids
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3148-3157Subventions
Organisme : National Science Foundation (NSF)
ID : EF-1935372
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
P. Vollhardt, N. Schore, Organic Chemistry: Structure and Function, W. H. Freeman, 8th ed., 2018.
V. Sojo, BioEssays 2019, 41, e1800251.
G. Wächtershäuser, Mol. Microbiol. 2003, 47, 13-22.
H. Shimada, A. Yamagishi, Biochemistry 2011, 50, 4114-4120.
A. Caforio, M. F. Siliakus, M. Exterkate, S. Jain, V. R. Jumde, R. L. H. Andringa, S. W. M. Kengen, A. J. Minnaard, A. J. M. Driessen, J. van der Oost, Proc. Natl. Acad. Sci. USA 2018, 115, 3704-3709.
E. Altamura, A. Comte, A. D'Onofrio, C. Roussillon, D. Fayolle, R. Buchet, F. Mavelli, P. Stano, M. Fiore, P. Strazewski, Symmetry 2020, 12, 1108.
H. Tsuchiya, M. Mizogami, Med. Hypotheses 2012, 79, 65-67.
H. Tsuchiya, M. Mizogami, Drug Target Insights 2020, 34-47.
H. Tsuchiya, T. Ueno, M. Mizogami, Bioorg. Med. Chem. 2011, 19, 3410-3415.
M. Mizogami, H. Tsuchiya, J. Adv. Med. Med. Res. 2019, 1-15.
R. C. IžmárikovÃi, J. C. Ižmárik, J. ValentovÃi, L. Habala, M. Markuliak, Molecules 2020, 25, 2738.
M. Fiore, R. Buchet, Symmetry 2020, 12, 1488.
T. Soderberg, 3.12: Prochirality - Chemistry LibreTexts, https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/03%3A_Conformations_and_Stereochemistry/3.12%3A_Prochirality, (accessed 20 March 2021).
L. Villanueva, S. Schouten, J. S. S. Damsté, Environ. Microbiol. 2017, 19, 54-69.
T. A. Williams, P. G. Foster, C. J. Cox, T. M. Embley, Nature 2013, 504, 231-236.
L. Eme, A. Spang, J. Lombard, C. W. Stairs, T. J. G. Ettema, Nat. Rev. Microbiol. 2017, 15, 711-723.
P. Forterre, Front. Microbiol. 2015, 6, 717.
K. Raymann, C. Brochier-Armanet, S. Gribaldo, Proc. Natl. Acad. Sci. USA 2015, 112, 6670-6675.
P. Nassoy, M. Goldmann, O. Bouloussa, F. Rondelez, Phys. Rev. Lett. 1995, 75, 457-460.
D. Vollhardt, G. Emrich, T. Gutberlet, J. H. Fuhrhop, Langmuir 1996, 12, 5659-5663.
V. M. Kaganer, Rev. Mod. Phys. 1999, 71, 779-819.
M. Uragami, Y. Miyake, S. L. Regen, Langmuir 2000, 16, 3491-3496.
S. I. Yokobori, Y. Nakajima, S. Akanuma, A. Yamagishi, Archaea 2016, 1802675.
G. A. Coleman, R. D. Pancost, T. A. Williams, T. Dagan, Genome Biol. Evol. 2019, 11, 883-898.
W. R. Hargreaves, S. J. Mulvihill, D. W. Deamer, Nature 1977, 266, 78-80.
D. E. Epps, E. Sherwood, J. Eichberg, J. Oró, J. Mol. Evol. 1978, 11, 279-292.
D. Fayolle, E. Altamura, A. D'Onofrio, W. Madanamothoo, B. Fenet, F. Mavelli, R. Buchet, P. Stano, M. Fiore, P. Strazewski, Sci. Rep. 2017, 22, 18106.
C. Gibard, S. Bhowmik, M. Karki, E. K. Kim, R. Krishnamurthy, Nat. Chem. 2018, 10, 212-217.
L. Liu, Y. Zou, A. Bhattacharya, D. Zhang, S. Q. Lang, K. N. Houk, N. K. Devaraj, Nat. Chem. 2020, 12, 1029-1034.
V. Sojo, Origins Life Evol. Biospheres 2015, 45, 219-224.
R. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 2009, 459, 379-385.
T. Markowski, S. Drescher, A. Meister, A. Blume, B. Dobner, Org. Biomol. Chem. 2014, 12, 3649-3662.
J. A. N. Zasadzinski, BBA-Biomembranes 1988, 946, 235-243.
L. Villanueva, F. A. Bastiaan von Meijenfeldt, A. B. Westbye, E. C. Hopmans, B. E. Dutilh, J. S. Sinninghe Damsté, bioRxiv 2018, https://doi.org/10.1101/448035.
L. Villanueva, F. A. B. Von Meijenfeldt, A. B. Westbye, E. C. Hopmans, B. E. Dutilh, J. S. S. Damsté, ISME J. 2021, 168-182.
H. Tsuchiya, M. Mizogami, Molecules 2017, 23, 49.
Y. Okamoto, Y. Kishi, T. Ishigami, K. Suga, H. Umakoshi, J. Phys. Chem. B 2016, 120, 2790-2795.
M. Jafurulla, Adv. Exp. Med. Biol. 2017, 1115, 21-39.
S. Lalitha, A. S. Kumar, K. J. Stine, D. F. Covey, J. Supramol. Chem. 2001, 1, 53-61.
Mass Spectrometry Imaging of Cholesterol, S. M. Cologna, Cholesterol Modulation of Protein Function (Eds.: A. Rosenhouse-Dantsker, A. N. Bukiya), Springer, 2019.
S. Hanashima, Y. Yano, M. Murata, Chirality 2020, 32, 282-298.
D. A. Mannock, T. J. McIntosh, X. Jiang, D. F. Covey, R. N. McElhaney, Biophys. J. 2003, 84, 1038-1046.
Y. Yano, S. Hanashima, T. Yasuda, H. Tsuchikawa, N. Matsumori, M. Kinoshita, M. A. Al Sazzad, J. P. Slotte, M. Murata, Biophys. J. 2018, 115, 1530-1540.
N. D'Avanzo, K. Hyrc, D. Enkvetchakul, D. F. Covey, C. G. Nichols, PLoS One 2011, 6, 2-8.
D. K. Singh, A. Rosenhouse-Dantsker, C. G. Nichols, D. Enkvetchakul, I. Levitan, J. Biol. Chem. 2009, 284, 30727-30736.
M. Jafurulla, B. D. Rao, S. Sreedevi, J. M. Ruysschaert, D. F. Covey, A. Chattopadhyay, Biochim. Biophys. Acta Biomembr. 2014, 1838, 158-163.
G. Gimpl, K. Burger, F. Fahrenholz, Biochemistry 1997, 36, 10959-10974.
G. H. Addona, H. Sandermann, M. A. Kloczewiak, K. W. Miller, Biochim. Biophys. Acta Biomembr. 2003, 1609, 177-182.
A. Chachaj-Brekiesz, A. Wnętrzak, E. Lipiec, P. Dynarowicz-Latka, Biochim. Biophys. Acta Biomembr. 2019, 1861, 1275-1283.
C. M. Crowder, E. J. Westover, A. S. Kumar, R. E. Ostlund, D. F. Covey, J. Biol. Chem. 2001, 276, 44369-44372.
S. C. D. N. Lopes, A. Fedorov, M. A. R. B. Castanho, ChemMedChem 2006, 1, 723-728.
S. T. Henriques, H. Peacock, A. H. Benfield, C. K. Wang, D. J. Craik, J. Am. Chem. Soc. 2019, 141, 20460-20469.
D. Izhaky, L. Addadi, Chem. Eur. J. 2000, 6, 869-874.
M. Kansy, F. Senner, K. Gubernator, J. Med. Chem. 1998, 41, 1007-1010.
P. Arranz-Gibert, B. Guixer, M. Malakoutikhah, M. Muttenthaler, F. Guzmán, M. Teixidó, E. Giralt, J. Am. Chem. Soc. 2015, 137, 7357-7364.
K. Sato, W. Ji, Z. Álvarez, L. C. Palmer, S. I. Stupp, ACS Biomater. Sci. Eng. 2019, 5, 2786-2792.
K. Chen, Y. Sheng, J. Wang, W. Wang, Int. J. Mol. Sci. 2019, 20, 4760.
T. Ishigami, K. Suga, H. Umakoshi, ACS Appl. Mater. Interfaces 2015, 7, 21065-21072.
J. Hu, W. G. Cochrane, A. X. Jones, D. G. Blackmond, B. M. Paegel, Nat. Chem. 2021, https://doi.org/10.1038/s41557-021-00708-z.
S. L. Grage, M. A. Sani, O. Cheneval, S. T. Henriques, C. Schalck, R. Heinzmann, J. S. Mylne, P. K. Mykhailiuk, S. Afonin, I. V. Komarov, F. Separovic, D. J. Craik, A. S. Ulrich, Biophys. J. 2017, 112, 630-642.
O. M. Schütte, L. J. Patalag, L. M. C. Weber, A. Ries, W. Römer, D. B. Werz, C. Steinem, Biophys. J. 2015, 108, 2775-2778.
S. Dutta, T. S. Finn, A. J. Kuhn, B. Abrams, J. A. Raskatov, ChemBioChem 2019, 20, 1023-1026.
S. Dutta, A. R. Foley, C. J. A. Warner, X. Zhang, M. Rolandi, B. Abrams, J. A. Raskatov, Angew. Chem. Int. Ed. 2017, 56, 11506-11510;
Angew. Chem. 2017, 129, 11664-11668.
X. Wang, C. Wang, H. Chu, H. Qin, D. Wang, F. Xu, X. Ai, C. Quan, G. Li, G. Qing, Chem. Sci. 2020, 11, 7369-7378.
A. R. Melton-Celsa, Microbiol. Spectr. 2014, https://doi.org/10.1128/microbiolspec.EHEC-0024-2013.
A. Zask, J. Murphy, G. A. Ellestad, Chirality 2013, 25, 265-274.
P. Gusain, S. Ohki, K. Hoshino, Y. Tsujino, N. Shimokawa, M. Takagi, Membranes 2017, 7, 69.
P. Novotná, F. Králík, M. Urbanová, Biophys. Chem. 2015, 205, 41-50.
A. D. McNaught, A. Wilkinson, IUPAC Compendium of Chemical Terminology (the ‘Gold Book’), Blackwell Scientific Publications, 2nd ed., 2009.
R. E. Arroyo-Carmona, P. Reyes-Lucas, R. E. Ramirez-Gutierrez, F. Coca-Santillana, Teaching Helical Chirality with a Paper Helicopter Teaching Stereochemistry View project Inorganic chemistry and X-ray structures View Project, 2016.
W. M. Penny, C. P. Palmer, Chem. Phys. Lipids 2018, 214, 11-14.
Propranolol: Medicine for Migraine, Anxiety and Heart & Blood Pressure Issues - NHS, https://www.nhs.uk/medicines/propranolol/, (accessed 21 January 2021).
A. M. Evans, Clin. Rheumatol. 2001, S9-14.
E. Aloi, B. Rizzuti, R. Guzzi, R. Bartucci, Arch. Biochem. Biophys. 2018, 654, 77-84.
Y. Okamoto, Y. Kishi, K. Suga, H. Umakoshi, Biomacromolecules 2017, 18, 1180-1188.
M. A. Pavel, E. N. Petersen, H. Wang, R. A. Lerner, S. B. Hansen, Proc. Natl. Acad. Sci. USA 2020, 117, 13757-13766.
R. A. Espiritu, N. Matsumori, M. Tsuda, M. Murata, Biochemistry 2014, 53, 3287-3293.