TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway.


Journal

Reproductive sciences (Thousand Oaks, Calif.)
ISSN: 1933-7205
Titre abrégé: Reprod Sci
Pays: United States
ID NLM: 101291249

Informations de publication

Date de publication:
11 2021
Historique:
received: 08 11 2020
accepted: 30 05 2021
pubmed: 8 7 2021
medline: 5 3 2022
entrez: 7 7 2021
Statut: ppublish

Résumé

Testis-specific gene antigen 10 (TSGA10) plays an important role in spermatogenesis. However, the exact TSGA10 role and its relationship with the autophagy pathway in the process of spermatids differentiation/maturation is still not clear. Therefore, the present study evaluates the role of TSGA10 gene in the spermatid differentiation/maturation through its effect on autophagy and explores possible underlying pathway(s). Sperm samples from patients with teratospermia were collected. The mRNA and protein level of TSGA10 in these samples were assessed by real-time PCR and western blotting. Using the ingenuity pathway analysis (IPA) software, the gene network and interactions of TSGA10 involved in sperm maturation and autophagy were investigated. Based on these analyses, the expression levels of identified genes in patient's samples and healthy controls were further evaluated. Moreover, using flow cytometry analysis, the levels of reactive oxygen species (ROS( production in teratospermic sperm samples were evaluated. The results showed that the expression levels of TSGA10 mRNA and protein decreased significantly in the teratospermic patients compared to controls (P < 0.05). Moreover, a significant reduction in the expression of the important genes involved in sperm maturation and autophagy was observed (P < 0.05). Also, the levels of ROS production in teratospermic sperm samples were shown to be significantly higher compared to those in normal sperms (P < 0.05). Our findings provide new evidence that simultaneous decrease in TSGA10 and autophagy beside the increased level of ROS production in sperm cells might be associated with the abnormalities in the spermatids differentiation/maturation and the formation of sperms with abnormal morphology.

Identifiants

pubmed: 34232471
doi: 10.1007/s43032-021-00648-6
pii: 10.1007/s43032-021-00648-6
doi:

Substances chimiques

Cytoskeletal Proteins 0
Reactive Oxygen Species 0
TSGA10 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3228-3240

Informations de copyright

© 2021. Society for Reproductive Investigation.

Références

De Braekeleer M, Nguyen MH, Morel F, Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet. 2015;32:615–23.
pubmed: 25711835 pmcid: 4380889 doi: 10.1007/s10815-015-0433-2
Heller CH, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.
pubmed: 14285045
Amann RP, Hammerstedt RH, Veeramachaneni DN. The epididymis and sperm maturation: a perspective. Reprod Fertil Dev. 1993;5:361–81.
pubmed: 8153387 doi: 10.1071/RD9930361
Chocu S, Calvel P, Rolland AD, Pineau C. Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med. 2012;58(4):179–90.
pubmed: 22788530 doi: 10.3109/19396368.2012.691943
Xu H, Yuan SQ, Zheng ZH, Yan W. The cytoplasmic droplet may be indicative of sperm motility and normal spermiogenesis. AsianJ Androl. 2013;15:799.
doi: 10.1038/aja.2013.69
Huang SL, Chou TC, Lin TH, Tsai MS, Wang SH. Gcse, a novel germ-cell-specific gene, is differentially expressed during meiosis and gametogenesis. Reprod Sci. 2013;20(10):1193–206.
pubmed: 23456662 doi: 10.1177/1933719113477490
Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One. 2012;7:41412.
doi: 10.1371/journal.pone.0041412
Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, et al. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy. 2016;12(9):1575–92.
pubmed: 27310465 pmcid: 5082779 doi: 10.1080/15548627.2016.1192750
Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(9):912–20.
pubmed: 19050324 doi: 10.1177/1933719108319159
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24(1):69–79.
doi: 10.1038/cr.2013.161 pubmed: 24323045
Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci. 2019;13:196.
pubmed: 31191249 pmcid: 6548059 doi: 10.3389/fncel.2019.00196
Asgari R, Bakhtiari M, Rezazadeh D, Vaisi-Raygani A, Mansouri K. Autophagy related gene expression status in patients diagnosed with azoospermia: A cross-sectional study. J Gene Med. 2020;22(4):3161.
doi: 10.1002/jgm.3161
Eid N, Ito Y, Otsuki Y. Enhanced mitophagy in Sertoli cells of ethanol-treated rats: morphological evidence and clinical relevance. J Mol Histol. 2012;43:71–80.
pubmed: 22076330 doi: 10.1007/s10735-011-9372-0
Kanninen TT, de Andrade Ramos BR, Witkin SS. The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol. 2013;171:3–8.
pubmed: 23932305 doi: 10.1016/j.ejogrb.2013.07.020
Modarressi MH, Cameron J, Taylor KE, Wolfe J. Identification and characterisation of a novel gene, TSGA10, expressed in testis. Gene. 2001;262:249–55.
pubmed: 11179690 doi: 10.1016/S0378-1119(00)00519-9
Behnam B, Modarressi MH, Conti V, Taylor KE, Puliti A, Wolfe J. Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochem Biophys Res Commun. 2006;344:1102–10.
pubmed: 16643851 doi: 10.1016/j.bbrc.2006.03.240
Tajaddini Mahani S, Behnam B, Abbassi M, Asgari H, Nazmara Z, Shirinbayan P, et al. Tsga10 expression correlates with sperm profiles in the adult formalin-exposed mice. Andrologia. 2016;48:1092–9.
pubmed: 26791599 doi: 10.1111/and.12543
Hagele S, Behnam B, Borter E, Wolfe J, Paasch U, Lukashev D, et al. TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS Lett. 2006;580:3731–8.
pubmed: 16777103 doi: 10.1016/j.febslet.2006.05.058
Behnam B, Mobahat M, Fazilaty H, Wolfe J, Omran H. TSGA10 is a centrosomal protein, interacts with ODF2 and localizes to basal body. J Cell Sci Ther. 2015;6:1.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721.
pubmed: 13130303 doi: 10.1038/nrc1187
Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1α. J Biol Chem. 2009;284:10004–12.
pubmed: 19211554 pmcid: 2665055 doi: 10.1074/jbc.M805997200
Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-dependent anti tumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230e238.
doi: 10.1016/j.ccr.2007.08.004
Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem. 2015;116:696e703.
doi: 10.1002/jcb.25074
Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet. 2015;25:233–44.
pubmed: 26573430 doi: 10.1093/hmg/ddv461
Amoorahim M, Valipour E, Hoseinkhani Z, Mahnam A, Rezazadeh D, Ansari M, et al. TSGA10 overexpression inhibits angiogenesis of HUVECs: A HIF-2α biased perspective. Microvasc Res. 2020;128:103952.
pubmed: 31704243 doi: 10.1016/j.mvr.2019.103952
Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Veeck LL, et al. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology. 1987;30(3):248–51.
pubmed: 3629768 doi: 10.1016/0090-4295(87)90246-9
Rastogi RP, Singh SP, Häder DP, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun. 2010;397(3):603–7.
pubmed: 20570649 doi: 10.1016/j.bbrc.2010.06.006
Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.
pubmed: 9159248 doi: 10.2741/A146
Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.
pubmed: 24884815 pmcid: 4049374 doi: 10.1186/1477-7827-12-45
Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2:214.
pubmed: 22485198 pmcid: 3304572
Parya RR, Mobasheri MB, Hashemzadeh-Chaleshtori M, Modarressi MH. Hypoxia-inducible factor α subunits are correlated with TSGA10 transcripts in HeLa, MCF7 and MDA-MB-231 cell lines. Basic Clin Cancer Res. 2018; 9.
Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy. 2007;3:207–14.
pubmed: 17224629 doi: 10.4161/auto.3708
Williams H, Johnson JL, Jackson CL, White SJ, George SJ. MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res. 2010;87:137–46.
pubmed: 20139113 pmcid: 2883897 doi: 10.1093/cvr/cvq042
Sha YW, Sha YK, Ji ZY, Mei LB, Ding L, Zhang Q, et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 2017.
Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genom Med. 2020; 1284.
Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6(1):1–9.
doi: 10.1038/s41598-016-0001-8
Yin J, Ni B. Tian Z-q, Yang F, Liao W-g, Gao Y-q. Regulatory effects of autophagy on spermatogenesis. Biol Reprod. 2017;96:525–30.
pubmed: 28339784 doi: 10.1095/biolreprod.116.144063
Liu ML, Wang JL, Wei J, Xu LL, Yu M, Liu XM, et al. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells. Reproduction. 2015;149:163–70.
pubmed: 25385720 doi: 10.1530/REP-14-0446
Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852.
pubmed: 24853953 pmcid: 4085765 doi: 10.1038/cr.2014.70
Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104:6852–7.
pubmed: 17426145 pmcid: 1871874 doi: 10.1073/pnas.0701669104
Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9:2888–902.
pubmed: 7498786 doi: 10.1101/gad.9.23.2888
Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci. 2000;97:6658–63.
pubmed: 10841563 pmcid: 18692 doi: 10.1073/pnas.97.12.6658
Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development. 2017;144:441–51.
pubmed: 28003215
Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat Genet. 1999;23:118–21.
pubmed: 10471512 doi: 10.1038/12729
Modarres P, Tavalaee M, Ghaedi K, Nasr-Esfahani MH. An overview of the globozoospermia as a multigenic identified syndrome. Int J Fertil Steril. 2019;12:273.
pubmed: 30291685
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism. 2012;61:1512–7.
pubmed: 22917893 doi: 10.1016/j.metabol.2012.07.011
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308–25.
pubmed: 26083323 pmcid: 4590681 doi: 10.1080/15548627.2015.1060386
Schuchman EH, Levran O, Pereira LV, Desnick RJ. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics. 1992;12:197–205.
pubmed: 1740330 doi: 10.1016/0888-7543(92)90366-Z
Teodosio C, Garcia-Montero AC, Jara-Acevedo M, Sanchez-Munoz L, Pedreira CE, Alvarez-Twose I, et al. Gene expression profile of highly purified bone marrow mast cells in systemic mastocytosis. J Allergy Clin Immunol. 2013;131:1213–24.
pubmed: 23403045 doi: 10.1016/j.jaci.2012.12.674
Agarwal A, Aitken RJ, Alvarez JG. Studies on men’s health and fertility. In: Oxidative stress in applied basic research and clinical practice: New York. Springer Sci Bus Media, LLC: Dordrecht, Heidelberg, London; 2012.
Thompson A, Agarwal A, du Plessis SS. Physiological role of reactive oxygen species in sperm function: a review. In: Parekatil SJ, Agarwal A, editors. Antioxidants in male infertility: a guide for clinicians and researchers. New York: Springer Sci Bus Media; 2013. p. 69–89.
doi: 10.1007/978-1-4614-9158-3_4
Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy. 2010;6:835–7.
pubmed: 20818163 doi: 10.4161/auto.6.7.13335
Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radic Biol Med. 2012;53:1399–410.
pubmed: 22820461 doi: 10.1016/j.freeradbiomed.2012.07.011
De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(1):15–21.
pubmed: 8592032 doi: 10.1093/humrep/10.suppl_1.15
Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.
pubmed: 20795359
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci. 2020;21(9):3289.
pmcid: 7246723 doi: 10.3390/ijms21093289
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.
pubmed: 15734681 doi: 10.1016/j.cell.2005.02.001
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31.
pubmed: 27085844 doi: 10.1016/j.freeradbiomed.2016.04.001
Lopez-Fernandez C, Crespo F, Arroyo F, Fernandez JL, Arana P, Johnston SD, et al. Dynamics of sperm DNA fragmentation in domestic animals: II. The stallion Theriogenology. 2007;68:1240–50.
pubmed: 17919715 doi: 10.1016/j.theriogenology.2007.08.029

Auteurs

Rezvan Asgari (R)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Mitra Bakhtiari (M)

Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Davood Rezazadeh (D)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Reza Yarani (R)

Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.

Farzaneh Esmaeili (F)

Infertility Treatment Research Center, Moatazedi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Kamran Mansouri (K)

Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. kmansouri@kums.ac.ir.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH