TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway.
Autophagy
Differentiation/maturation
ROS
Spermatid
TSGA10
Journal
Reproductive sciences (Thousand Oaks, Calif.)
ISSN: 1933-7205
Titre abrégé: Reprod Sci
Pays: United States
ID NLM: 101291249
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
08
11
2020
accepted:
30
05
2021
pubmed:
8
7
2021
medline:
5
3
2022
entrez:
7
7
2021
Statut:
ppublish
Résumé
Testis-specific gene antigen 10 (TSGA10) plays an important role in spermatogenesis. However, the exact TSGA10 role and its relationship with the autophagy pathway in the process of spermatids differentiation/maturation is still not clear. Therefore, the present study evaluates the role of TSGA10 gene in the spermatid differentiation/maturation through its effect on autophagy and explores possible underlying pathway(s). Sperm samples from patients with teratospermia were collected. The mRNA and protein level of TSGA10 in these samples were assessed by real-time PCR and western blotting. Using the ingenuity pathway analysis (IPA) software, the gene network and interactions of TSGA10 involved in sperm maturation and autophagy were investigated. Based on these analyses, the expression levels of identified genes in patient's samples and healthy controls were further evaluated. Moreover, using flow cytometry analysis, the levels of reactive oxygen species (ROS( production in teratospermic sperm samples were evaluated. The results showed that the expression levels of TSGA10 mRNA and protein decreased significantly in the teratospermic patients compared to controls (P < 0.05). Moreover, a significant reduction in the expression of the important genes involved in sperm maturation and autophagy was observed (P < 0.05). Also, the levels of ROS production in teratospermic sperm samples were shown to be significantly higher compared to those in normal sperms (P < 0.05). Our findings provide new evidence that simultaneous decrease in TSGA10 and autophagy beside the increased level of ROS production in sperm cells might be associated with the abnormalities in the spermatids differentiation/maturation and the formation of sperms with abnormal morphology.
Identifiants
pubmed: 34232471
doi: 10.1007/s43032-021-00648-6
pii: 10.1007/s43032-021-00648-6
doi:
Substances chimiques
Cytoskeletal Proteins
0
Reactive Oxygen Species
0
TSGA10 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3228-3240Informations de copyright
© 2021. Society for Reproductive Investigation.
Références
De Braekeleer M, Nguyen MH, Morel F, Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet. 2015;32:615–23.
pubmed: 25711835
pmcid: 4380889
doi: 10.1007/s10815-015-0433-2
Heller CH, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545–75.
pubmed: 14285045
Amann RP, Hammerstedt RH, Veeramachaneni DN. The epididymis and sperm maturation: a perspective. Reprod Fertil Dev. 1993;5:361–81.
pubmed: 8153387
doi: 10.1071/RD9930361
Chocu S, Calvel P, Rolland AD, Pineau C. Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med. 2012;58(4):179–90.
pubmed: 22788530
doi: 10.3109/19396368.2012.691943
Xu H, Yuan SQ, Zheng ZH, Yan W. The cytoplasmic droplet may be indicative of sperm motility and normal spermiogenesis. AsianJ Androl. 2013;15:799.
doi: 10.1038/aja.2013.69
Huang SL, Chou TC, Lin TH, Tsai MS, Wang SH. Gcse, a novel germ-cell-specific gene, is differentially expressed during meiosis and gametogenesis. Reprod Sci. 2013;20(10):1193–206.
pubmed: 23456662
doi: 10.1177/1933719113477490
Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J. Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One. 2012;7:41412.
doi: 10.1371/journal.pone.0041412
Shang Y, Wang H, Jia P, Zhao H, Liu C, Liu W, et al. Autophagy regulates spermatid differentiation via degradation of PDLIM1. Autophagy. 2016;12(9):1575–92.
pubmed: 27310465
pmcid: 5082779
doi: 10.1080/15548627.2016.1192750
Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci. 2008;15(9):912–20.
pubmed: 19050324
doi: 10.1177/1933719108319159
Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24(1):69–79.
doi: 10.1038/cr.2013.161
pubmed: 24323045
Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central nervous system. Front Cell Neurosci. 2019;13:196.
pubmed: 31191249
pmcid: 6548059
doi: 10.3389/fncel.2019.00196
Asgari R, Bakhtiari M, Rezazadeh D, Vaisi-Raygani A, Mansouri K. Autophagy related gene expression status in patients diagnosed with azoospermia: A cross-sectional study. J Gene Med. 2020;22(4):3161.
doi: 10.1002/jgm.3161
Eid N, Ito Y, Otsuki Y. Enhanced mitophagy in Sertoli cells of ethanol-treated rats: morphological evidence and clinical relevance. J Mol Histol. 2012;43:71–80.
pubmed: 22076330
doi: 10.1007/s10735-011-9372-0
Kanninen TT, de Andrade Ramos BR, Witkin SS. The role of autophagy in reproduction from gametogenesis to parturition. Eur J Obstet Gynecol Reprod Biol. 2013;171:3–8.
pubmed: 23932305
doi: 10.1016/j.ejogrb.2013.07.020
Modarressi MH, Cameron J, Taylor KE, Wolfe J. Identification and characterisation of a novel gene, TSGA10, expressed in testis. Gene. 2001;262:249–55.
pubmed: 11179690
doi: 10.1016/S0378-1119(00)00519-9
Behnam B, Modarressi MH, Conti V, Taylor KE, Puliti A, Wolfe J. Expression of Tsga10 sperm tail protein in embryogenesis and neural development: from cilium to cell division. Biochem Biophys Res Commun. 2006;344:1102–10.
pubmed: 16643851
doi: 10.1016/j.bbrc.2006.03.240
Tajaddini Mahani S, Behnam B, Abbassi M, Asgari H, Nazmara Z, Shirinbayan P, et al. Tsga10 expression correlates with sperm profiles in the adult formalin-exposed mice. Andrologia. 2016;48:1092–9.
pubmed: 26791599
doi: 10.1111/and.12543
Hagele S, Behnam B, Borter E, Wolfe J, Paasch U, Lukashev D, et al. TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS Lett. 2006;580:3731–8.
pubmed: 16777103
doi: 10.1016/j.febslet.2006.05.058
Behnam B, Mobahat M, Fazilaty H, Wolfe J, Omran H. TSGA10 is a centrosomal protein, interacts with ODF2 and localizes to basal body. J Cell Sci Ther. 2015;6:1.
Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721.
pubmed: 13130303
doi: 10.1038/nrc1187
Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1α. J Biol Chem. 2009;284:10004–12.
pubmed: 19211554
pmcid: 2665055
doi: 10.1074/jbc.M805997200
Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-dependent anti tumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230e238.
doi: 10.1016/j.ccr.2007.08.004
Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem. 2015;116:696e703.
doi: 10.1002/jcb.25074
Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet. 2015;25:233–44.
pubmed: 26573430
doi: 10.1093/hmg/ddv461
Amoorahim M, Valipour E, Hoseinkhani Z, Mahnam A, Rezazadeh D, Ansari M, et al. TSGA10 overexpression inhibits angiogenesis of HUVECs: A HIF-2α biased perspective. Microvasc Res. 2020;128:103952.
pubmed: 31704243
doi: 10.1016/j.mvr.2019.103952
Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Veeck LL, et al. New method of evaluating sperm morphology with predictive value for human in vitro fertilization. Urology. 1987;30(3):248–51.
pubmed: 3629768
doi: 10.1016/0090-4295(87)90246-9
Rastogi RP, Singh SP, Häder DP, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun. 2010;397(3):603–7.
pubmed: 20570649
doi: 10.1016/j.bbrc.2010.06.006
Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.
pubmed: 9159248
doi: 10.2741/A146
Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.
pubmed: 24884815
pmcid: 4049374
doi: 10.1186/1477-7827-12-45
Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2:214.
pubmed: 22485198
pmcid: 3304572
Parya RR, Mobasheri MB, Hashemzadeh-Chaleshtori M, Modarressi MH. Hypoxia-inducible factor α subunits are correlated with TSGA10 transcripts in HeLa, MCF7 and MDA-MB-231 cell lines. Basic Clin Cancer Res. 2018; 9.
Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy. 2007;3:207–14.
pubmed: 17224629
doi: 10.4161/auto.3708
Williams H, Johnson JL, Jackson CL, White SJ, George SJ. MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res. 2010;87:137–46.
pubmed: 20139113
pmcid: 2883897
doi: 10.1093/cvr/cvq042
Sha YW, Sha YK, Ji ZY, Mei LB, Ding L, Zhang Q, et al. TSGA10 is a novel candidate gene associated with acephalic spermatozoa. Clin Genet. 2017.
Ye Y, Wei X, Sha Y, Li N, Yan X, Cheng L, et al. Loss-of-function mutation in TSGA10 causes acephalic spermatozoa phenotype in human. Mol Genet Genom Med. 2020; 1284.
Zhang Q, Gao M, Zhang Y, Song Y, Cheng H, Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci Rep. 2016;6(1):1–9.
doi: 10.1038/s41598-016-0001-8
Yin J, Ni B. Tian Z-q, Yang F, Liao W-g, Gao Y-q. Regulatory effects of autophagy on spermatogenesis. Biol Reprod. 2017;96:525–30.
pubmed: 28339784
doi: 10.1095/biolreprod.116.144063
Liu ML, Wang JL, Wei J, Xu LL, Yu M, Liu XM, et al. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells. Reproduction. 2015;149:163–70.
pubmed: 25385720
doi: 10.1530/REP-14-0446
Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852.
pubmed: 24853953
pmcid: 4085765
doi: 10.1038/cr.2014.70
Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104:6852–7.
pubmed: 17426145
pmcid: 1871874
doi: 10.1073/pnas.0701669104
Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, Boeke JD. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995;9:2888–902.
pubmed: 7498786
doi: 10.1101/gad.9.23.2888
Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci. 2000;97:6658–63.
pubmed: 10841563
pmcid: 18692
doi: 10.1073/pnas.97.12.6658
Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development. 2017;144:441–51.
pubmed: 28003215
Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat Genet. 1999;23:118–21.
pubmed: 10471512
doi: 10.1038/12729
Modarres P, Tavalaee M, Ghaedi K, Nasr-Esfahani MH. An overview of the globozoospermia as a multigenic identified syndrome. Int J Fertil Steril. 2019;12:273.
pubmed: 30291685
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism. 2012;61:1512–7.
pubmed: 22917893
doi: 10.1016/j.metabol.2012.07.011
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, et al. ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 2015;11:1308–25.
pubmed: 26083323
pmcid: 4590681
doi: 10.1080/15548627.2015.1060386
Schuchman EH, Levran O, Pereira LV, Desnick RJ. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics. 1992;12:197–205.
pubmed: 1740330
doi: 10.1016/0888-7543(92)90366-Z
Teodosio C, Garcia-Montero AC, Jara-Acevedo M, Sanchez-Munoz L, Pedreira CE, Alvarez-Twose I, et al. Gene expression profile of highly purified bone marrow mast cells in systemic mastocytosis. J Allergy Clin Immunol. 2013;131:1213–24.
pubmed: 23403045
doi: 10.1016/j.jaci.2012.12.674
Agarwal A, Aitken RJ, Alvarez JG. Studies on men’s health and fertility. In: Oxidative stress in applied basic research and clinical practice: New York. Springer Sci Bus Media, LLC: Dordrecht, Heidelberg, London; 2012.
Thompson A, Agarwal A, du Plessis SS. Physiological role of reactive oxygen species in sperm function: a review. In: Parekatil SJ, Agarwal A, editors. Antioxidants in male infertility: a guide for clinicians and researchers. New York: Springer Sci Bus Media; 2013. p. 69–89.
doi: 10.1007/978-1-4614-9158-3_4
Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy. 2010;6:835–7.
pubmed: 20818163
doi: 10.4161/auto.6.7.13335
Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: Implications for cancer treatment. Free Radic Biol Med. 2012;53:1399–410.
pubmed: 22820461
doi: 10.1016/j.freeradbiomed.2012.07.011
De Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(1):15–21.
pubmed: 8592032
doi: 10.1093/humrep/10.suppl_1.15
Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.
pubmed: 20795359
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci. 2020;21(9):3289.
pmcid: 7246723
doi: 10.3390/ijms21093289
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.
pubmed: 15734681
doi: 10.1016/j.cell.2005.02.001
Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med. 2016;100:14–31.
pubmed: 27085844
doi: 10.1016/j.freeradbiomed.2016.04.001
Lopez-Fernandez C, Crespo F, Arroyo F, Fernandez JL, Arana P, Johnston SD, et al. Dynamics of sperm DNA fragmentation in domestic animals: II. The stallion Theriogenology. 2007;68:1240–50.
pubmed: 17919715
doi: 10.1016/j.theriogenology.2007.08.029