Ergonomic port placement in robotic colorectal surgery.
ergonomics
port placement
robotic colorectal surgery
Journal
Colorectal disease : the official journal of the Association of Coloproctology of Great Britain and Ireland
ISSN: 1463-1318
Titre abrégé: Colorectal Dis
Pays: England
ID NLM: 100883611
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
01
06
2021
received:
20
03
2021
accepted:
29
06
2021
pubmed:
8
7
2021
medline:
30
10
2021
entrez:
7
7
2021
Statut:
ppublish
Résumé
The aim of the study was to determine how spacing between ports and alignment of ports (oblique or vertical) influences manipulation angles in robotic colorectal surgery. Abdominal CT scans of 10 consecutive robotic right hemicolectomy and 10 consecutive robotic high anterior resection patients were analysed. The manipulation angles were calculated using fixed points on the preoperative abdominal coronal CT scan. Port placements were marked on the CT scan. The fixed points used to measure the manipulation angles were from the most lateral part of the caecum, hepatic flexure, splenic flexure, the descending colon/sigmoid colon junction and the sigmoid colon/rectum junction. For right hemicolectomy and high anterior resection surgery, a port spacing of 8 cm compared with 6 cm resulted in greater manipulation angles. With 6-cm port spacing, wider manipulation angles were not achieved with vertical port alignment compared with oblique alignment except for dissection at the splenic flexure. The greatest manipulation angles were achieved with the oblique 8-cm port spacing, which should be used in most cases.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2593-2603Informations de copyright
© 2021 The Association of Coloproctology of Great Britain and Ireland.
Références
Armstrong J, Bryn J. Ergonomics in Robotic Colorectal Surgery, Robotic Colon and Rectal Surgery: Springer International Publishing; 2017. p. 169-82.
Hayashi Y, Misawa K, Mori K. Optimal port placement planning method for laparoscopic gastrectomy. Int J Comput Assist Radiol Surg. 2017;12(10):1677-84.
Dijkstra FA, Bosker RJI, Veeger NJGM, van Det MJ, Pierie JPEN, et al. Procedural key steps in laparoscopic colorectal surgery, consensus through Delphi methodology. Surg Endosc. 2015;29:2620-7.
Supe AN, Kulkarni GV, Supe PA. Ergonomics in laparoscopic surgery. J Minim Access Surg. 2010;6(2):31-6.
Trejos AL, Patel RV, Ross I, Kiaii B. Optimizing port placement for robot-assisted minimally invasive cardiac surgery. Int J Med Robot. 2007;3(4):355-64.
Fingerhut A, Hanna GB, Veyrie N, Ferzli G, Millat B, Alexakis N, et al. Optimal trocar placement for ergonomic intracorporeal sewing and knotting in laparoscopic hiatal surgery. Am J Surg. 2010;200(4):519-28.
Muhlmann MD, Rodrigues SJ, Wong SW. Ergonomic port placement in laparoscopic colorectal surgery. Colorectal Dis. 2012;14(9):1132-7.
Lee JL, Alsaleem HA, Kim JC. Robotic surgery for colorectal disease: review of current port placement and future perspectives. Ann Surg Treat Res. 2020;98(1):31-43.
Perez D, Wöstemeier A, Ghadban T, Stein H, Gomez-Ruiz M, Izbicki JR, et al. Standardisierte Zugangsoptionen für die kolorektale Chirurgie mit dem Da-Vinci-Xi-System. Wiener klinisches Magazin. 2020;23(4):176-83.
Cannon JW, Stoll JA, Selha SD, Dupont PE, Howe RD, Torchiana DF. Port placement planning in robot-assisted coronary artery bypass. IEEE Trans Rob Autom. 2003;19(5):912-7.
Hanna GB, Shimi S, Cuschieri A. Influence of direction of view, target-to-endoscope distance and manipulation angle on endoscopic knot tying. Br J Surg. 1997;84(10):1460-4.
Hanna GB, Shimi S, Cuschieri A. Optimal port locations for endoscopic intracorporeal knotting. Surg Endosc. 1997;11(4):397-401.
Islam A, Mishra R. Evaluation of various port positions for minimal access cardiovascular and thoracic procedures. World J Laparoscopic Surg. 2019;12(3):101-15.
de Visser H, Heijnsdijk EA, Herder JL, Pistecky PV. Forces and displacements in colon surgery. Surg Endosc. 2002;16(10):1426-30.
Manasnayakorn S, Cuschieri A, Hanna GB. Ideal manipulation angle and instrument length in hand-assisted laparoscopic surgery. Surg Endosc. 2008;22(4):924-9.
Hanna GB, Shimi SM, Cuschieri A. Task performance in endoscopic surgery is influenced by location of the image display. Ann Surg. 1998;227(4):481-4.
Sexton K, Johnson A, Gotsch A, Hussein AA, Cavuoto L, Guru KA. Anticipation, teamwork and cognitive load: chasing efficiency during robot-assisted surgery. BMJ Qual Saf. 2018;27(2):148-54.
Arora S, Sevdalis N, Nestel D, Woloshynowych M, Darzi A, Kneebone R. The impact of stress on surgical performance: a systematic review of the literature. Surgery. 2010;147(3):318-30, 30 e1-6.
Anderson PL, Lathrop RA, Herrell SD, Webster RJ 3rd. Comparing a mechanical analogue with the Da Vinci user interface: suturing at challenging angles. IEEE Robot Autom Lett. 2016;1(2):1060-5.
Gao Y, Wang S, Li J, Li A, Liu H, Xing Y. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance. Int J Med Robot. 2017;13(4):e1829.
Abiri A, Tao A, LaRocca M, Guan X, Askari SJ, Bisley JW, et al. Visual-perceptual mismatch in robotic surgery. Surg Endosc. 2017;31(8):3271-8.
Ngu JC, Tsang CB, Koh DC. The da Vinci Xi: a review of its capabilities, versatility, and potential role in robotic colorectal surgery. Robot Surg. 2017;4:77-85.
Cestari A, Ferrari M, Zanoni M, Sangalli M, Ghezzi M, Fabbri F, et al. Side docking of the da Vinci robotic system for radical prostatectomy: advantages over traditional docking. J Robot Surg. 2015;9(3):243-7.
Feng M, Jin X, Tong W, Guo X, Zhao J, Fu Y. Pose optimization and port placement for robot-assisted minimally invasive surgery in cholecystectomy. Int J Med Robot. 2017;13(4).
Selha S, Dupont P, Howe R, Torchiana D. Dexterity optimization by port placement in robot-assisted minimally invasive surgery. SPIE. 2002.