Two genetic analyses to elucidate causality between body mass index and personality.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
10 2021
Historique:
received: 17 04 2020
accepted: 22 06 2021
revised: 19 05 2021
pubmed: 12 7 2021
medline: 3 2 2022
entrez: 11 7 2021
Statut: ppublish

Résumé

Many personality traits correlate with BMI, but the existence and direction of causal links between them are unclear. If personality influences BMI, knowing this causal direction could inform weight management strategies. Knowing that BMI instead influences personality would contribute to a better understanding of the mechanisms of personality development and the possible psychological effects of weight change. We tested the existence and direction of causal links between BMI and personality. We employed two genetically informed methods. In Mendelian randomization, allele scores were calculated to summarize genetic propensity for the personality traits neuroticism, worry, and depressive affect and used to predict BMI in an independent sample (N = 3 541). Similarly, an allele score for BMI was used to predict eating-specific and domain-general phenotypic personality scores (PPSs; aggregate scores of personality traits weighted by BMI). In a direction of causation (DoC) analysis, twin data from five countries (N = 5424) were used to assess the fit of four alternative models: PPSs influencing BMI, BMI influencing PPSs, reciprocal causation, and no causation. In Mendelian randomization, the allele score for BMI predicted domain-general (β = 0.05; 95% CI: 0.02, 0.08; P = 0.003) and eating-specific PPS (β = 0.06; 95% CI: 0.03, 0.09; P < 0.001). The allele score for worry also predicted BMI (β = -0.05; 95% CI: -0.08, -0.02; P < 0.001), while those for neuroticism and depressive affect did not (P ≥ 0.459). In DoC, BMI similarly predicted domain-general (β = 0.21; 95% CI:, 0.18, 0.24; P < 0.001) and eating-specific personality traits (β = 0.19; 95% CI:, 0.16, 0.22; P < 0.001), suggesting causality from BMI to personality traits. In exploratory analyses, links between BMI and domain-general personality traits appeared reciprocal for higher-weight individuals (BMI > ~25). Although both genetic analyses suggested an influence of BMI on personality traits, it is not yet known if weight management interventions could influence personality. Personality traits may influence BMI in turn, but effects in this direction appeared weaker.

Sections du résumé

BACKGROUND/OBJECTIVES
Many personality traits correlate with BMI, but the existence and direction of causal links between them are unclear. If personality influences BMI, knowing this causal direction could inform weight management strategies. Knowing that BMI instead influences personality would contribute to a better understanding of the mechanisms of personality development and the possible psychological effects of weight change. We tested the existence and direction of causal links between BMI and personality.
SUBJECTS/METHODS
We employed two genetically informed methods. In Mendelian randomization, allele scores were calculated to summarize genetic propensity for the personality traits neuroticism, worry, and depressive affect and used to predict BMI in an independent sample (N = 3 541). Similarly, an allele score for BMI was used to predict eating-specific and domain-general phenotypic personality scores (PPSs; aggregate scores of personality traits weighted by BMI). In a direction of causation (DoC) analysis, twin data from five countries (N = 5424) were used to assess the fit of four alternative models: PPSs influencing BMI, BMI influencing PPSs, reciprocal causation, and no causation.
RESULTS
In Mendelian randomization, the allele score for BMI predicted domain-general (β = 0.05; 95% CI: 0.02, 0.08; P = 0.003) and eating-specific PPS (β = 0.06; 95% CI: 0.03, 0.09; P < 0.001). The allele score for worry also predicted BMI (β = -0.05; 95% CI: -0.08, -0.02; P < 0.001), while those for neuroticism and depressive affect did not (P ≥ 0.459). In DoC, BMI similarly predicted domain-general (β = 0.21; 95% CI:, 0.18, 0.24; P < 0.001) and eating-specific personality traits (β = 0.19; 95% CI:, 0.16, 0.22; P < 0.001), suggesting causality from BMI to personality traits. In exploratory analyses, links between BMI and domain-general personality traits appeared reciprocal for higher-weight individuals (BMI > ~25).
CONCLUSIONS
Although both genetic analyses suggested an influence of BMI on personality traits, it is not yet known if weight management interventions could influence personality. Personality traits may influence BMI in turn, but effects in this direction appeared weaker.

Identifiants

pubmed: 34247202
doi: 10.1038/s41366-021-00885-4
pii: 10.1038/s41366-021-00885-4
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2244-2251

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Tremmel M, Gerdtham U-G, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Environ Res Public Health. 2017;14:435.
doi: 10.3390/ijerph14040435
The GBD 2015 Obesity Collaborators.Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.
doi: 10.1056/NEJMoa1614362
Jokela M, Hintsanen M, Hakulinen C, Batty GD, Nabi H, Singh-Manoux A, et al. Association of personality with the development and persistence of obesity: a meta-analysis based on individual-participant data. Obes Rev. 2013;14:315–23.
pubmed: 23176713 doi: 10.1111/obr.12007
Davey Smith G, Holmes MV, Davies NM, Ebrahim S. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur J Epidemiol. 2020;35:99–111.
pubmed: 32207040 pmcid: 7125255 doi: 10.1007/s10654-020-00622-7
Friedman HS. Neuroticism and health as individuals age. Person Disord Theory Res. Treat. 2019;10:25–32.
doi: 10.1037/per0000274
Widiger TA. Personality and psychopathology. World Psychiatry. 2011;10:103–106.
doi: 10.1002/j.2051-5545.2011.tb00024.x
Roberts BW, Kuncel NR, Shiner R, Caspi A, Goldberg LR. The power of personality: the comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspect Psychol Sci. 2007;2:313–45.
pubmed: 26151971 pmcid: 4499872 doi: 10.1111/j.1745-6916.2007.00047.x
Murray AL, Booth T. Personality and physical health. Curr Opin Psychol. 2015;5:50–55.
doi: 10.1016/j.copsyc.2015.03.011
Bleidorn W, Hill PL, Back MD, Denissen JJA, Hennecke M, Hopwood CJ, et al. The policy relevance of personality traits. Am Psychol. 2019;74:1056–67.
pubmed: 31829685 doi: 10.1037/amp0000503
Gerlach G, Herpertz S, Loeber S. Personality traits and obesity: a systematic review. Obes Rev. 2015;16:32–63.
pubmed: 25470329 doi: 10.1111/obr.12235
McCrae RR. A more nuanced view of reliability: specificity in the trait hierarchy. Pers Soc Psychol Rev. 2015;19:97–112.
pubmed: 24989047 doi: 10.1177/1088868314541857
Mõttus R. Towards more rigorous personality trait-outcome research. Eur J Pers. 2016;30:292–303.
doi: 10.1002/per.2041
Vainik U, Dagher A, Realo A, Colodro-Conde L, Mortensen EL, Jang K, et al. Personality-obesity associations are driven by narrow traits: a meta-analysis. Obes Rev. 2019;20:1121–31.
pubmed: 30985072
Armon G, Melamed S, Shirom A, Shapira I, Berliner S. Personality traits and body weight measures: concurrent and across-time associations. Eur J Pers. 2013;27:398–408.
doi: 10.1002/per.1902
Hampson SE, Edmonds GW, Goldberg LR, Dubanoski JP, Hillier TA. A life-span behavioral mechanism relating childhood conscientiousness to adult clinical health. Health Psychol. 2015;34:887–95.
pubmed: 25622076 pmcid: 4515399 doi: 10.1037/hea0000209
Lahti M, Räikkönen K, Lemola S, Lahti J, Heinonen K, Kajantie E, et al. Trajectories of physical growth and personality dimensions of the Five-Factor Model. J Pers Soc Psychol. 2013;105:154–69.
pubmed: 23713700 doi: 10.1037/a0032300
Bordignon S, Aparício MJG, Bertoletti J, Trentini CM. Personality characteristics and bariatric surgery outcomes: a systematic review. Trends Psychiatry Psychother. 2017;39:124–34.
pubmed: 28614435 doi: 10.1590/2237-6089-2016-0016
Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19:566–80.
pubmed: 29872216 doi: 10.1038/s41576-018-0020-3
Lawlor DA, Tilling K, Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45:1866–86.
pubmed: 28108528
Briley DA, Livengood J, Derringer J. Behaviour genetic frameworks of causal reasoning for personality psychology. Eur J Pers. 2018;32:202–20.
doi: 10.1002/per.2153
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;103:965–78.
pubmed: 26961927 pmcid: 4807699 doi: 10.3945/ajcn.115.118216
Lawlor DA, Harbord RM, Tybjaerg-Hansen A, Palmer TM, Zacho J, Benn M, et al. Using genetic loci to understand the relationship between adiposity and psychological distress: A Mendelian Randomization study in the Copenhagen General Population Study of 53,221 adults. J Intern Med. 2011;269:525–37.
pubmed: 21210875 doi: 10.1111/j.1365-2796.2011.02343.x
Wootton RE, Lawn RB, Millard LAC, Davies NM, Taylor AE, Munafò MR. et al. Evaluation of the causal effects between subjective well being and cardiometabolic health: Mendelian randomisation study. BMJ. 2018;362:k3788.
pubmed: 30254091 pmcid: 6155050 doi: 10.1136/bmj.k3788
Martins-Silva T, Vaz J, dos S, Hutz MH, Salatino-Oliveira A, Genro JP, et al. Assessing causality in the association between attention-deficit/hyperactivity disorder and obesity: a Mendelian randomization study. Int J Obes. 2019;43:2500–2508.
doi: 10.1038/s41366-019-0346-8
Chabris CF, Lee JJ, Benjamin DJ, Beauchamp JP, Glaeser EL, Borst G, et al. Why it is hard to find genes associated with social science traits: theoretical and empirical considerations. Am J Public Health. 2013;103:S152–S166.
pubmed: 23927501 pmcid: 3778125 doi: 10.2105/AJPH.2013.301327
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
pubmed: 25673413 pmcid: 4382211 doi: 10.1038/nature14177
Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9:905.
pubmed: 29500382 pmcid: 5834468 doi: 10.1038/s41467-018-03242-8
Heath AC, Kessler RC, Neale MC, Hewitt JK, Eaves LJ, Kendler KS. Testing hypotheses about direction of causation using cross-sectional family data. Behav Genet. 1993;23:29–50.
pubmed: 8476389 doi: 10.1007/BF01067552
Leitsalu L, Haller T, Esko T, Tammesoo M-L, Alavere H, Snieder H, et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44:1137–47.
pubmed: 24518929 doi: 10.1093/ije/dyt268
Reile R, Tekkel M, Veideman T. Eesti täiskasvanud rahvastiku tervisekäitumise uuring 2018 [Health Behaviour among Estonian Adult Population 2018]. National Institute for Health Development; 2019.
Costa PT, McCrae RR. Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO-FFI): Professional manual. Psychological Assessment Resources, Inc; 1992.
McCrae RR, Costa PT Jr., Martin TA. The NEO-PI-3: a more readable revised NEO Personality Inventory. J Pers Assess. 2005;84:261–70.
pubmed: 15907162 doi: 10.1207/s15327752jpa8403_05
Vainik U, Neseliler S, Konstabel K, Fellows LK, Dagher A. Eating traits questionnaires as a continuum of a single concept. Uncontrolled eating. Appetite. 2015;90:229–39.
pubmed: 25769975 doi: 10.1016/j.appet.2015.03.004
Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12:1100–22.
pubmed: 28841086 pmcid: 6603289 doi: 10.1177/1745691617693393
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Eysenck SBG, Eysenck HJ, Barrett P. A revised version of the psychoticism scale. Pers Indiv Dif. 1985;6:21–29.
doi: 10.1016/0191-8869(85)90026-1
Draycott SG, Kline P. The big three or the big five - the EPQ-R vs the NEO-PI: a research note, replication and elaboration. Pers Indiv Dif. 1995;18:801–804.
doi: 10.1016/0191-8869(95)00010-4
Lo M-T, Hinds DA, Tung JY, Franz C, Fan C-C, Wang Y, et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat Genet. 2017;49:152–156.
pubmed: 27918536 doi: 10.1038/ng.3736
Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.
pubmed: 30002074 pmcid: 6041728 doi: 10.1136/bmj.k601
Muthén LK, Muthén B. Mplus. The comprehensive modelling program for applied researchers: User’s guide. (Los Angeles, CA: Muthén & Muthén. 2016).
Hu L-T, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6:1–55.
doi: 10.1080/10705519909540118
MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychol Methods. 1996;1:130–49.
doi: 10.1037/1082-989X.1.2.130
Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res. 2004;33:261–304.
doi: 10.1177/0049124104268644
Rasmussen SHR, Ludeke S, Hjelmborg JVB. A major limitation of the direction of causation model: non-shared environmental confounding. Twin Res Hum Genet. 2019;22:14–26.
pubmed: 30663577 doi: 10.1017/thg.2018.67
Henry S, Mõttus R Traits versus adaptations: examining item-level characteristics of the five-factor model of personality. 2018. https://osf.io/3cebh/ (Accessed 9 Feb 2020).
Leatherdale ST, Laxer RE. Reliability and validity of the weight status and dietary intake measures in the COMPASS questionnaire: Are the self-reported measures of body mass index (BMI) and Canada’s food guide servings robust? Int J Behav Nutr Phys Act. 2013;10:42.
pubmed: 23561578 pmcid: 3663698 doi: 10.1186/1479-5868-10-42
Briley DA, Harden KP, Bates TC, Tucker-Drob EM. Nonparametric estimates of gene environment interaction using local structural equation modeling. Behav Genet. 2015;45:581–96.
pubmed: 26318287 pmcid: 5374877 doi: 10.1007/s10519-015-9732-8
Blundell JE, Gibbons C, Beaulieu K, Casanova N, Duarte C, Finlayson G, et al. The drive to eat in homo sapiens: Energy expenditure drives energy intake. Physiol Behav. 2020;219:112846.
pubmed: 32081814 doi: 10.1016/j.physbeh.2020.112846
Vainik U, García-García I, Dagher A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. European Journal of Neuroscience. 2019;50:2430–45.
doi: 10.1111/ejn.14352 pubmed: 30667547
Hudson NW, Roberts BW. Goals to change personality traits: concurrent links between personality traits, daily behavior, and goals to change oneself. J Res Pers. 2014;53:68–83.
doi: 10.1016/j.jrp.2014.08.008
Millard LAC, Davies NM, Tilling K, Gaunt TR, Davey Smith G. Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet. 2019;15:e1007951.
pubmed: 30707692 pmcid: 6373977 doi: 10.1371/journal.pgen.1007951
Weiss A, Deary IJ. A new look at neuroticism: should we worry so much about worrying? Curr Dir Psychol Sci. 2020;29:92–101.
doi: 10.1177/0963721419887184
Emery RL, Levine MD. Questionnaire and behavioral task measures of impulsivity are differentially associated with body mass index: a comprehensive meta-analysis. Psychol Bull. 2017;143:868–902.
pubmed: 28493725 doi: 10.1037/bul0000105
Turkheimer E, Pettersson E, Horn EE. A phenotypic null hypothesis for the genetics of personality. Annu Rev Psychol. 2014;65:515–40.
pubmed: 24050184 doi: 10.1146/annurev-psych-113011-143752
Denissen JJA, Luhmann M, Chung JM, Bleidorn W. Transactions between life events and personality traits across the adult lifespan. J Pers Soc Psychol. 2019;116:612–33.
pubmed: 30047764 doi: 10.1037/pspp0000196
Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W, et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106:457–66.
pubmed: 28679550 pmcid: 5525120 doi: 10.3945/ajcn.117.153643
Schrempft S, Jaarsveld CHM, van, Fisher A, Herle M, Smith AD, Fildes A, et al. Variation in the heritability of child body mass index by obesogenic home environment. JAMA Pediatr. 2018;172:1153–60.
pubmed: 30285028 pmcid: 6396810 doi: 10.1001/jamapediatrics.2018.1508
Horn EE, Turkheimer E, Strachan E, Duncan GE. Behavioral and environmental modification of the genetic influence on body mass index: a twin study. Behav Genet. 2015;45:409–26.
pubmed: 25894925 pmcid: 4459891 doi: 10.1007/s10519-015-9718-6
Levallius J, Clinton D, Bäckström M, Norring C. Who do you think you are? - Personality in eating disordered patients. J Eat Disord. 2015;3:3.
pubmed: 25774297 pmcid: 4359531 doi: 10.1186/s40337-015-0042-6
Hudson NW, Fraley RC. Changing for the better? Longitudinal associations between volitional personality change and psychological well-being. Pers Soc Psychol Bull. 2016;42:603–15.
pubmed: 27016068 doi: 10.1177/0146167216637840

Auteurs

Kadri Arumäe (K)

University of Tartu, Tartu, Estonia.

Daniel Briley (D)

University of Illinois, Champaign, IL, USA.

Lucía Colodro-Conde (L)

QIMR Berghofer Medical Research Institute Brisbane, Brisbane, QLD, Australia.

Erik Lykke Mortensen (EL)

University of Copenhagen, Copenhagen, Denmark.

Kerry Jang (K)

University of British Columbia, Vancouver, BC, Canada.

Juko Ando (J)

Keio University, Tokyo, Japan.

Christian Kandler (C)

University of Bremen, Bremen, Germany.

Thorkild I A Sørensen (TIA)

University of Copenhagen, Copenhagen, Denmark.

Alain Dagher (A)

Montreal Neurological Institute, McGill University, Montreal, QC, Canada.

René Mõttus (R)

University of Tartu, Tartu, Estonia.
University of Edinburgh, Edinburgh, Scotland.

Uku Vainik (U)

University of Tartu, Tartu, Estonia. uku.vainik@gmail.com.
Montreal Neurological Institute, McGill University, Montreal, QC, Canada. uku.vainik@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH