3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 07 2021
Historique:
received: 15 04 2021
accepted: 18 06 2021
entrez: 17 7 2021
pubmed: 18 7 2021
medline: 18 7 2021
Statut: epublish

Résumé

3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig-zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.

Identifiants

pubmed: 34272408
doi: 10.1038/s41598-021-93205-9
pii: 10.1038/s41598-021-93205-9
pmc: PMC8285473
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14584

Informations de copyright

© 2021. The Author(s).

Références

Anal Chem. 2014 Mar 18;86(6):3124-30
pubmed: 24512498
Nat Prod Rep. 2010 Jun;27(6):869-86
pubmed: 20411198
Opt Lett. 2012 Dec 15;37(24):5030-2
pubmed: 23257994
Lab Chip. 2011 Nov 7;11(21):3656-62
pubmed: 21918752
Anal Chem. 2008 Aug 15;80(16):6365-72
pubmed: 18510341
Nat Nanotechnol. 2014 Aug;9(8):624-30
pubmed: 25038779
Opt Lett. 1993 Nov 1;18(21):1867-9
pubmed: 19829431
Nat Biotechnol. 2005 Jan;23(1):83-7
pubmed: 15608628
Lab Chip. 2015 Mar 7;15(5):1262-6
pubmed: 25622755
J Bacteriol. 2007 Jul;189(13):4681-7
pubmed: 17468248
Nat Prod Rep. 2017 Nov 15;34(11):1252-1263
pubmed: 28849835
Opt Express. 2010 Mar 15;18(6):6396-407
pubmed: 20389663
Sci Rep. 2013;3:1258
pubmed: 23409249
Sci Rep. 2018 Mar 19;8(1):4791
pubmed: 29556013
Lab Chip. 2016 May 24;16(11):1993-2013
pubmed: 27146365
Opt Express. 2015 Nov 30;23(24):30991-1009
pubmed: 26698730
Biophys J. 2005 May;88(5):3689-98
pubmed: 15722433
Lab Chip. 2016 May 21;16(10):1720-42
pubmed: 27101171
Lab Chip. 2015 Jun 7;15(11):2364-78
pubmed: 25906246
J Biophotonics. 2010 Apr;3(4):234-43
pubmed: 20301123
Micromachines (Basel). 2018 Aug 04;9(8):
pubmed: 30424321
Appl Opt. 1997 Sep 1;36(25):6423-33
pubmed: 18259500
Lab Chip. 2012 Sep 7;12(17):3177-83
pubmed: 22767208
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81
pubmed: 26854878
Lab Chip. 2012 Nov 21;12(22):4816-20
pubmed: 23007197
Lab Chip. 2012 Oct 7;12(19):3779-84
pubmed: 22868483
Lab Chip. 2015;15(18):3627-37
pubmed: 26237523
Org Lett. 2019 Jun 7;21(11):4163-4167
pubmed: 31099577
Opt Express. 2016 Jul 25;24(15):16952-60
pubmed: 27464147
Lab Chip. 2011 Apr 21;11(8):1484-90
pubmed: 21340095
Chemistry. 2020 Oct 27;26(60):13578-13583
pubmed: 32484589
Opt Express. 2016 Apr 4;24(7):7575-84
pubmed: 27137046
Biomed Opt Express. 2010 Aug 09;1(2):527-536
pubmed: 21258487
J Cell Sci. 2001 Mar;114(Pt 5):1025-36
pubmed: 11181185
Opt Express. 2009 Nov 23;17(24):21680-90
pubmed: 19997409
Opt Express. 2010 Mar 1;18(5):4679-88
pubmed: 20389480
PLoS One. 2012;7(9):e45237
pubmed: 23028868
Small. 2019 Jan;15(2):e1804326
pubmed: 30548194

Auteurs

Haoran Wang (H)

Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.

Anton Enders (A)

Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany.

John-Alexander Preuss (JA)

Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany.

Janina Bahnemann (J)

Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany.

Alexander Heisterkamp (A)

Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.

Maria Leilani Torres-Mapa (ML)

Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany. torres@iqo.uni-hannover.de.
Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany. torres@iqo.uni-hannover.de.

Classifications MeSH