Photocatalytic reduction of 4-nitroaniline in aqueous solution using BiOCl/BiOBr/rGO ternary heterojunction under simulated UV-visible light irradiation.
Band gap
Photocatalyst
Recombination
Simple mixing
Visible light
rGO
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
23
02
2021
accepted:
06
07
2021
pubmed:
18
7
2021
medline:
18
7
2021
entrez:
17
7
2021
Statut:
ppublish
Résumé
BiOCl/BiOBr/rGO ternary heterojunctions were synthesized and characterized, and their photocatalytic activities were examined. Three different rGO mass ratios were incorporated into BiOCl
Identifiants
pubmed: 34272685
doi: 10.1007/s43630-021-00075-1
pii: 10.1007/s43630-021-00075-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
997-1009Subventions
Organisme : United Arab Emirates University
ID : 31R238
Informations de copyright
© 2021. The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.
Références
Wu, W., Lin, R., Shen, L., Liang, R., Yuan, R., & Wu, L. (2013). Mechanistic insight into the photocatalytic hydrogenation of 4-nitroaniline over band-gap-tunable CdS photocatalysts. Physical Chemistry Chemical Physics: PCCP, 15, 19422. https://doi.org/10.1039/c3cp53195c
doi: 10.1039/c3cp53195c
pubmed: 24126821
T. Clausen, A. Schwan-Jonczyk, G. Lang, W. Schuh, K.D. Liebscher, C. Springob, M. Franzke, W. Balzer, S. Imhoff, G. Maresch, R. Bimczok, Hair preparations, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006: 204–247. https://doi.org/10.1002/14356007.a12_571.pub2 .
Begum, P. M. S. (2011). Use of antioxidant-modified precipitated silica in natural rubber. Progress in Rubber, Plastics and Recycling Technology, 27, 215–228. https://doi.org/10.1177/147776061102700403
doi: 10.1177/147776061102700403
R.A. Smiley, Phenylene-and toluenediamines, in: Ullmann’s Encycl. Ind. Chem., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2000: 616–622. https://doi.org/10.1002/14356007.a19_405 .
Wu, W., Liang, S., Chen, Y., Shen, L., Zheng, H., & Wu, L. (2012). High efficient photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over microcrystalline SrBi2Nb2O9. Catalysis Communications, 17, 39–42. https://doi.org/10.1016/j.catcom.2011.10.012
doi: 10.1016/j.catcom.2011.10.012
Wu, W., Lin, R., Shen, L., Liang, R., Yuan, R., & Wu, L. (2013). Visible-light-induced photocatalytic hydrogenation of 4-nitroaniline over In2S3 photocatalyst in water. Catalysis Communications, 40, 1–4. https://doi.org/10.1016/j.catcom.2013.05.016
doi: 10.1016/j.catcom.2013.05.016
Wu, W., Liu, G., Liang, S., Chen, Y., Shen, L., Zheng, H., Yuan, R., Hou, Y., & Wu, L. (2012). Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline PbBi2Nb2O9. Journal of Catalysis, 290, 13–17. https://doi.org/10.1016/j.jcat.2012.02.005
doi: 10.1016/j.jcat.2012.02.005
Xiong, J., Liu, Y., Cao, C., Shen, L., Wu, W., Liang, S., Liang, R., & Wu, L. (2015). An architecture of CdS/H2Ti5O11 ultrathin nanobelt for photocatalytic hydrogenation of 4-nitroaniline with highly efficient performance. Journal of Materials Chemistry A., 3, 6935–6942. https://doi.org/10.1039/C5TA00629E
doi: 10.1039/C5TA00629E
Lang, X., Chen, X., & Zhao, J. (2014). Heterogeneous visible light photocatalysis for selective organic transformations. Chemical Society Reviews, 43, 473–486. https://doi.org/10.1039/C3CS60188A
doi: 10.1039/C3CS60188A
pubmed: 24162830
Zhang, Y., Zhang, N., Tang, Z.-R., & Xu, Y.-J. (2013). A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water. ACS Sustainable Chemistry and Engineering, 1, 1258–1266. https://doi.org/10.1021/sc400116k
doi: 10.1021/sc400116k
Zhang, Y., & Xu, Y.-J. (2014). Bi2WO6: A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Advances, 4, 2904–2910. https://doi.org/10.1039/C3RA46383D
doi: 10.1039/C3RA46383D
Sharma, K., Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Thakur, P., & Singh, P. (2019). Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. Journal of Industrial and Engineering Chemistry, 78, 1–20. https://doi.org/10.1016/j.jiec.2019.06.022
doi: 10.1016/j.jiec.2019.06.022
Imamura, K., Iwasaki, S., Maeda, T., Hashimoto, K., Ohtani, B., & Kominami, H. (2011). Photocatalytic reduction of nitrobenzenes to aminobenzenes in aqueous suspensions of titanium(iv) oxide in the presence of hole scavengers under deaerated and aerated conditions. Physical Chemistry Chemical Physics: PCCP, 13, 5114. https://doi.org/10.1039/c0cp02279a
doi: 10.1039/c0cp02279a
pubmed: 21298128
Ahmed, S. H., Bakiro, M., Aljasmi, F. I. A., Albreiki, A. M. O., Bayane, S., & Alzamly, A. (2020). Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. Molecular Catalysis, 486, 110874. https://doi.org/10.1016/j.mcat.2020.110874
doi: 10.1016/j.mcat.2020.110874
Bakiro, M., Ahmed, S. H., & Alzamly, A. (2020). Investigation of the band gap energy shift and photocatalytic properties of Bi3+-doped ceria. Inorganic Chemistry Communications, 116, 107906. https://doi.org/10.1016/j.inoche.2020.107906
doi: 10.1016/j.inoche.2020.107906
Wang, Y., Zheng, Y.-Z., Lu, S., Tao, X., Che, Y., & Chen, J.-F. (2015). Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Applied Materials & Interfaces, 7, 6093–6101. https://doi.org/10.1021/acsami.5b00980
doi: 10.1021/acsami.5b00980
Wu, W., Liu, G., Xie, Q., Liang, S., Zheng, H., Yuan, R., Su, W., & Wu, L. (2012). A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water. Green Chemistry, 14, 1705. https://doi.org/10.1039/c2gc35231a
doi: 10.1039/c2gc35231a
Lv, T., Pan, L., Liu, X., & Sun, Z. (2012). Visible-light photocatalytic degradation of methyl orange by CdS–TiO2–Au composites synthesized via microwave-assisted reaction. Electrochimica Acta, 83, 216–220. https://doi.org/10.1016/j.electacta.2012.08.018
doi: 10.1016/j.electacta.2012.08.018
Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Materials, 29, 1601694. https://doi.org/10.1002/adma.201601694
doi: 10.1002/adma.201601694
Ao, Y., Wang, K., Wang, P., Wang, C., & Hou, J. (2016). Synthesis of novel 2D–2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Applied Catalysis B: Environmental, 194, 157–168. https://doi.org/10.1016/j.apcatb.2016.04.050
doi: 10.1016/j.apcatb.2016.04.050
Natarajan, T. S., Lee, J. Y., Bajaj, H. C., Jo, W. K., & Tayade, R. J. (2017). Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catalysis Today, 282, 13–23. https://doi.org/10.1016/j.cattod.2016.03.018
doi: 10.1016/j.cattod.2016.03.018
Agrios, A. G., & Pichat, P. (2006). Recombination rate of photogenerated charges versus surface area: Opposing effects of TiO2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water. Journal of Photochemistry and Photobiology, A: Chemistry, 180, 130–135. https://doi.org/10.1016/j.jphotochem.2005.10.003
doi: 10.1016/j.jphotochem.2005.10.003
A. Alzamly, M. Bakiro, S.H. Ahmed, S.M. Sallabi, R.A. Al Ajeil, S.A. Alawadhi, H.A. Selem, S.S.M. Al Meshayei, A. Khaleel, N. Al-Shamsi, N. Saleh, Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 375 (2019) 30–39. https://doi.org/10.1016/j.jphotochem.2019.01.031 .
Cooling, N., Burke, K. B., Zhou, X., Lind, S. J., Gordon, K. C., Jones, T. W., Dastoor, P. C., & Belcher, W. J. (2011). A study of the factors influencing the performance of ternary MEH-PPV:Porphyrin:PCBM heterojunction devices: A steric approach to controlling charge recombination. Solar Energy Materials and Solar Cells, 95, 1767–1774. https://doi.org/10.1016/j.solmat.2011.01.046
doi: 10.1016/j.solmat.2011.01.046
Huan, H., Jile, H., Tang, Y., Li, X., Yi, Z., Gao, X., Chen, X., Chen, J., & Wu, P. (2020). Fabrication of ZnO@Ag@Ag3PO4 Ternary Heterojunction: Superhydrophilic Properties. Antireflection and Photocatalytic Properties, Micromachines., 11, 309. https://doi.org/10.3390/mi11030309
doi: 10.3390/mi11030309
Pramoda, K., Gupta, U., Chhetri, M., Bandyopadhyay, A., Pati, S. K., & Rao, C. N. R. (2017). Nanocomposites of C 3 N 4 with Layers of MoS 2 and Nitrogenated RGO, Obtained by Covalent Cross-Linking: Synthesis, Characterization, and HER Activity. ACS Applied Materials & Interfaces, 9, 10664–10672. https://doi.org/10.1021/acsami.7b00085
doi: 10.1021/acsami.7b00085
Zhang, R., Zhao, C., Zhang, T., Han, Q., Li, Y., Liu, Y., & Zeng, K. (2020). Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and Bi25FeO40 for enhanced visible-light photocatalysis. Journal of Inorganic and Organometallic Polymers and Materials, 30, 2152–2162. https://doi.org/10.1007/s10904-019-01385-9
doi: 10.1007/s10904-019-01385-9
Tauc, J. (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5, 721–729. https://doi.org/10.1016/0025-5408(70)90112-1
doi: 10.1016/0025-5408(70)90112-1
V. Kokla, A. Tselikas, Computational retrieval techniques in the interpretation of medieval ink manuscripts, in: Griechisch-Byzantinische Handschriftenforsch., De Gruyter, 2020: pp. 563–580.
S. Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, (Photo)catalyst Characterization Techniques, in: Heterog. Photocatal. Elsevier, 2019: pp. 87–152. https://doi.org/10.1016/B978-0-444-64015-4.00004-3 .
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
doi: 10.1515/pac-2014-1117
Zhang, M., Gong, J., Zeng, G., Zhang, P., Song, B., Cao, W., Liu, H., & Huan, S. (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 169–183. https://doi.org/10.1016/j.colsurfa.2018.09.049
doi: 10.1016/j.colsurfa.2018.09.049
Padhi, D. K., Panigrahi, T. K., Parida, K., Singh, S. K., & Mishra, P. M. (2017). Green Synthesis of Fe 3 O 4 /RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 5, 10551–10562. https://doi.org/10.1021/acssuschemeng.7b02548
doi: 10.1021/acssuschemeng.7b02548
Moghanlou, A. O., Bezaatpour, A., Sadr, M. H., Yosefi, M., & Salimi, F. (2021). Cu2O/rGO as an efficient photocatalyst for transferring of nitro group to amine group under visible light irradiation. Materials Science in Semiconductor Processing, 130, 105838. https://doi.org/10.1016/j.mssp.2021.105838
doi: 10.1016/j.mssp.2021.105838
Kumar, S., Pandit, V., Bhattacharyya, K., & Krishnan, V. (2018). Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Materials Chemistry and Physics, 214, 364–376. https://doi.org/10.1016/j.matchemphys.2018.04.113
doi: 10.1016/j.matchemphys.2018.04.113