The role of leiomodin in actin dynamics: a new road or a secret gate.


Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
10 2022
Historique:
revised: 10 05 2021
received: 15 03 2021
accepted: 16 07 2021
pubmed: 18 7 2021
medline: 20 10 2022
entrez: 17 7 2021
Statut: ppublish

Résumé

Leiomodin is an important emerging regulator of thin filaments. As novel molecular, cellular, animal model, and human data accumulate, the mechanisms of its action become clearer. Structural studies played a significant part in understanding the functional significance of leiomodin's interacting partners and functional domains. In this review, we present the current state of knowledge on the structural and cellular properties of leiomodin which has led to two proposed mechanisms of its function. Although it is known that leiomodin is essential for life, numerous domains within leiomodin remain unstudied and as such, we outline future directions for investigations that we predict will provide evidence that leiomodin is a multifunctional protein.

Identifiants

pubmed: 34273242
doi: 10.1111/febs.16128
pmc: PMC8761783
mid: NIHMS1725705
doi:

Substances chimiques

Actins 0
Tropomodulin 0
Tropomyosin 0

Types de publication

Journal Article Review Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

6119-6131

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM120137
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL123078
Pays : United States

Informations de copyright

© 2021 Federation of European Biochemical Societies.

Références

Martin TG & Kirk JA (2020) Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 148, 89-102.
Tskhovrebova L & Trinick J (2017) Titin and nebulin in thick and thin filament length regulation. Subcell Biochem 82, 285-318.
Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271, 1403-1415.
Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari VL, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O et al. (2014) Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Investig 124, 4693-4708.
Winter JM, Joureau B, Lee EJ, Kiss B, Yuen M, Gupta VA, Pappas CT, Gregorio CC, Stienen GJ, Edvardson S et al. (2016) Mutation-specific effects on thin filament length in thin filament myopathy. Ann Neurol 79, 959-969.
Pappas CT, Mayfield RM, Henderson C, Jamilpour N, Cover C, Hernandez Z, Hutchinson KR, Chu M, Nam KH, Valdez JM et al. (2015) Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci USA 112, 13573-13578.
Ahrens-Nicklas RC, Pappas CT, Farman GP, Mayfield RM, Larrinaga TM, Medne L, Ritter A, Krantz ID, Murali C, Lin KY et al. (2019) Disruption of cardiac thin filament assembly arising from a mutation in LMOD2: A novel mechanism of neonatal dilated cardiomyopathy. Science advances 5, eaax2066.
Ottenheijm CA, Witt CC, Stienen GJ, Labeit S, Beggs AH & Granzier H (2009) Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency. Hum Mol Genet 18, 2359-2369.
Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD & Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320, 239-243.
Conley CA (2001) Leiomodin and tropomodulin in smooth muscle. Am J Physiol Cell Physiol 280, C1645-C1656.
Conley CA, Fritz-Six KL, Almenar-Queralt A & Fowler VM (2001) Leiomodins: larger members of the tropomodulin (Tmod) gene family. Genomics 73, 127-139.
Nanda V & Miano JM (2012) Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 287, 2459-2467.
Halim D, Wilson MP, Oliver D, Brosens E, Verheij JB, Han Y, Nanda V, Lyu Q, Doukas M, Stoop H et al. (2017) Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci USA 114, E2739-E2747.
Johnson TP, Tyagi R, Lee PR, Lee M-H, Johnson KR, Kowalak J, Elkahloun A, Medynets M, Hategan A, Kubofcik J et al. (2017) Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. Sci Transl Med 9, eaaf6953.
Nauen DW, Haffner MC, Kim J, Zheng Q, Yin H, DeMarzo AM, Mahairaki V, Colantuoni C, Pickering JG & Johnson TP (2020) Putative Autoantigen Leiomodin-1 is expressed in the human brain and in the membrane fraction of newly formed neurons. Pathogens 9, 1036.
Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS & Gregorio CC (2010) Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 123, 3136-3145.
Gokhin DS, Ochala J, Domenighetti AA & Fowler VM (2015) Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development 142, 4351-4362.
Kiss B, Gohlke J, Tonino P, Hourani Z, Kolb J, Strom J, Alekhina O, Smith JE, Ottenheijm C, Gregorio C et al. (2020) Nebulin and Lmod2 are critical for specifying thin-filament length in skeletal muscle. Science advances 6, eabc1992.
Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN & Liu N (2015) Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. Journal of Clinical Investigation 125, 1569-1578.
Tian L, Ding S, You Y, Li TR, Liu Y, Wu X, Sun L & Xu T (2015) Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Mod Mech 8, 635-641.
Nworu CU, Kraft R, Schnurr DC, Gregorio CC & Krieg PA (2015) Leiomodin 3 and Tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis. J Cell Sci 128, 239-250.
Michael E, Hedberg-Oldfors C, Wilmar P, Visuttijai K, Oldfors A & Darin N (2019) Long-term follow-up and characteristic pathological findings in severe nemaline myopathy due to LMOD3 mutations. Neuromuscul Disord 29, 108-113.
Almenar-Queralt A, Lee A, Conley CA, de Pouplana LR & Fowler VM (1999) Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J Biol Chem 274, 28466-28475.
Fowler VM (1990) Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol 111, 471-481.
Fowler VM, Sussmann MA, Miller PG, Flucher BE & Daniels MP (1993) Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol 120, 411-420.
Watakabe A, Kobayashi R & Helfman DM (1996) N-tropomodulin: a novel isoform of tropomodulin identified as the major binding protein to brain tropomyosin. J Cell Sci 109 (Pt 9), 2299-2310.
Cox PR & Zoghbi HY (2000) Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 63, 97-107.
Weber A, Pennise CR, Babcock GG & Fowler VM (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127, 1627-1635.
Gregorio CC, Weber A, Bondad M, Pennise CR & Fowler VM (1995) Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377, 83-86.
Fowler VM, Greenfield NJ & Moyer J (2003) Tropomodulin contains two actin filament pointed end-capping domains. J Biol Chem 278, 40000-40009.
Kostyukova AS, Choy A & Rapp BA (2006) Tropomodulin binds two tropomyosins: a novel model for actin filament capping. Biochemistry 45, 12068-12075.
Kostyukova AS, Hitchcock-Degregori SE & Greenfield NJ (2007) Molecular basis of tropomyosin binding to tropomodulin, an actin-capping protein. J Mol Biol 372, 608-618.
Kostyukova A, Maeda K, Yamauchi E, Krieger I & Maeda Y (2000) Domain structure of tropomodulin: distinct properties of the N-terminal and C-terminal halves. Eur J Biochem 267, 6470-6475.
Krieger I, Kostyukova A, Yamashita A, Nitanai Y & Maeda Y (2002) Crystal structure of the C-terminal half of tropomodulin and structural basis of actin filament pointed-end capping. Biophys J 83, 2716-2725.
Kobe B (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11, 725-732.
Rao JN, Madasu Y & Dominguez R (2014) Mechanism of actin filament pointed-end capping by tropomodulin. Science 345, 463-467.
Tolkatchev D, Kuruba B, Smith GE, Swain KD, Smith KA, Moroz N, Williams TJ & Kostyukova AS (2021) Structural insights into the tropomodulin assembly at the pointed ends of actin filaments. Protein Sci 30, 423-437.
Sung LA, Fowler VM, Lambert K, Sussman MA, Karr D & Chien S (1992) Molecular cloning and characterization of human fetal liver tropomodulin. A tropomyosin-binding protein. J Biol Chem 267, 2616-2621.
Fischer RS, Fritz-Six KL & Fowler VM (2003) Pointed-end capping by tropomodulin3 negatively regulates endothelial cell motility. J Cell Biol 161, 371-380.
Geeves MA, Hitchcock-DeGregori SE & Gunning PW (2015) A systematic nomenclature for mammalian tropomyosin isoforms. J Muscle Res Cell Motil 36, 147-153.
Uversky VN, Shah SP, Gritsyna Y, Hitchcock-DeGregori SE & Kostyukova AS (2011) Systematic analysis of tropomodulin/tropomyosin interactions uncovers fine-tuned binding specificity of intrinsically disordered proteins. JMR 24, 647-655.
Colpan M, Moroz NA & Kostyukova AS (2013) Tropomodulins and tropomyosins: working as a team. J Muscle Res Cell Motil 34, 247-260.
Gray KT, Kostyukova AS & Fath T (2017) Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 84, 48-57.
Fowler VM & Dominguez R (2017) Tropomodulins and leiomodins: actin pointed end caps and nucleators in muscles. Biophys J 112, 1742-1760.
Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Svitkina T, Dominguez R & Lappalainen P (2010) Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 21, 3352-3361.
Boczkowska M, Rebowski G, Kremneva E, Lappalainen P & Dominguez R (2015) How Leiomodin and Tropomodulin use a common fold for different actin assembly functions. Nat Commun 6, 8314.
Pappas CT, Farman GP, Mayfield RM, Konhilas JP & Gregorio CC (2018) Cardiac-specific knockout of Lmod2 results in a severe reduction in myofilament force production and rapid cardiac failure. J Mol Cell Cardiol 122, 88-97.
Tolkatchev D, Smith GE, Schultz LE, Colpan M, Helms GL, Cort JR, Gregorio CC & Kostyukova AS (2020) Leiomodin creates a leaky cap at the pointed end of actin-thin filaments. PLoS Biol 18, e3000848.
Mi-Mi L, Farman GP, Mayfield RM, Strom J, Chu M, Pappas CT & Gregorio CC (2020) In vivo elongation of thin filaments results in heart failure. PLoS One 15, e0226138.
Szatmári D, Bugyi B, Ujfalusi Z, Grama L, Dudás R & Nyitrai M (2017) Cardiac leiomodin2 binds to the sides of actin filaments and regulates the ATPase activity of myosin. PLoS One 12, e0186288.
Tolkatchev D, Smith GE Jr & Kostyukova AS (2019) Role of intrinsic disorder in muscle sarcomeres. Prog Mol Biol Transl Sci 166, 311-340.
Kostyukova AS (2007) Leiomodin/tropomyosin interactions are isoform specific. Arch Biochem Biophys 465, 227-230.
Ly T, Moroz N, Pappas CT, Novak SM, Tolkatchev D, Wooldridge D, Mayfield RM, Helms G, Gregorio CC & Kostyukova AS (2016) The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2's function. Mol Biol Cell 27, 2565-2575.
Colpan M, Ly T, Grover S, Tolkatchev D & Kostyukova AS (2017) The cardiomyopathy-associated K15N mutation in tropomyosin alters actin filament pointed end dynamics. Arch Biochem Biophys 630, 18-26.
O'Shea EK, Klemm JD, Kim PS & Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539-544.
Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT & Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364, 80-96.
Nitanai Y, Minakata S, Maeda K, Oda N & Maeda Y (2007) Crystal structures of tropomyosin: flexible coiled-coil. Adv Exp Med Biol 592, 137-151.
Prestegard JH, Bougault CM & Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104, 3519-3540.
Greenfield NJ, Kotlyanskaya L & Hitchcock-DeGregori SE (2009) Structure of the N terminus of a nonmuscle alpha-tropomyosin in complex with the C terminus: implications for actin binding. Biochemistry 48, 1272-1283.
Frye J, Klenchin VA & Rayment I (2010) Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Biochemistry 49, 4908-4920.
Lehman W & Craig R (2008) Tropomyosin and the Steric Mechanism of Muscle Regulation. Adv Exp Med Biol 644, 95-109.
Hitchcock-DeGregori SE, Sampath P & Pollard TD (1988) Tropomyosin inhibits the rate of actin polymerization by stabilizing actin filaments. Biochemistry 27, 9182-9185.
Colpan M, Tolkatchev D, Grover S, Helms GL, Cort JR, Moroz N & Kostyukova AS (2016) Localization of the binding interface between leiomodin-2 and α-tropomyosin. Biochim Biophys Acta 1864, 523-530.
Arslan B, Colpan M, Gray KT, Abu-Lail NI & Kostyukova AS (2018) Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin. Arch Biochem Biophys 638, 18-26.
Boczkowska M, Yurtsever Z, Rebowski G, Eck MJ & Dominguez R (2017) Crystal structure of leiomodin 2 in complex with actin: a structural and functional reexamination. Biophys J 113, 889-899.
Chen X, Ni F, Kondrashkina E, Ma J & Wang Q (2015) Mechanisms of leiomodin 2-mediated regulation of actin filament in muscle cells. Proc Natl Acad Sci USA 112, 12687-12692.
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ & Kostyukova AS (2019) Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 30, 268-281.
Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM & Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 14, 1583-1589.
Purich DL & Southwick FS (1997) ABM-1 and ABM-2 homology sequences: consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP. Biochem Biophys Res Commun 231, 686-691.
Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S, Roy P, Jockusch BM, Carpen O, Karlsson R et al. (2006) The proline-rich protein palladin is a binding partner for profilin. FEBS J 273, 26-33.
Qualmann B & Kessels MM (2009) New players in actin polymerization - WH2-domain-containing actin nucleators. Trends Cell Biol 19, 276-285.
Dominguez R (2016) The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci 41, 478-490.
Rao J, Lahiri J, Isaacs L, Weis RM & Whitesides GM (1998) A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin. Science 280, 708-711.
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD et al. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47, W636-W641.

Auteurs

Dmitri Tolkatchev (D)

Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.

Carol C Gregorio (CC)

Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.

Alla S Kostyukova (AS)

Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH