[Use of machine learning for the prediction of stress using the example of logistics].
Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik.
Break management
Machine learning
Psychophysiology
Sensor technology
Stress
Journal
Zeitschrift fur Arbeitswissenschaft
ISSN: 0340-2444
Titre abrégé: Z Arbeitswiss
Pays: Germany
ID NLM: 7605201
Informations de publication
Date de publication:
2021
2021
Historique:
accepted:
17
06
2021
pubmed:
20
7
2021
medline:
20
7
2021
entrez:
19
7
2021
Statut:
ppublish
Résumé
Stress and its complex effects have been researched since the beginning of the 20th century. The manifold psychological and physical stressors in the world of work can, in sum, lead to disorders of the organism and to illness. Since the physical and subjective consequences of stress vary individually, no absolute threshold values can be determined. Machine learning (ML) methods are used in this article to research the systematic recognition of patterns of physiological and subjective stress parameters and to predict stress. The logistics sector serves as a practical application case in which stress factors are often rooted in the activity and work organisation. One design element of the prevention of stress is the work break. ML methods are used to investigate the extent to which stress can be predicted on the basis of physiological and subjective parameters in order to recommend breaks individually. The article presents the interim status of a software solution for dynamic break management for logistics.
Identifiants
pubmed: 34276123
doi: 10.1007/s41449-021-00263-w
pii: 263
pmc: PMC8276219
doi:
Types de publication
English Abstract
Journal Article
Langues
ger
Pagination
282-295Informations de copyright
© The Author(s) 2021.
Références
Psychophysiology. 1973 Jul;10(4):431-6
pubmed: 4719486
Sensors (Basel). 2019 Apr 18;19(8):
pubmed: 31003456
IEEE J Biomed Health Inform. 2020 Jan;24(1):92-100
pubmed: 30668508
Biochim Biophys Acta. 1975 Oct 20;405(2):442-51
pubmed: 1180967
BMC Genomics. 2020 Jan 2;21(1):6
pubmed: 31898477
Biol Psychol. 2013 Feb;92(2):220-6
pubmed: 23085133
Sci Rep. 2020 Feb 7;10(1):2118
pubmed: 32034184
Epilepsia. 2020 Dec;61(12):2653-2666
pubmed: 33040327
Biol Psychol. 2007 Jul;75(3):267-76
pubmed: 17485157
J Biomed Inform. 2017 Sep;73:159-170
pubmed: 28803947
NPJ Digit Med. 2019;2:
pubmed: 31119198
IEEE J Biomed Health Inform. 2014 Nov;18(6):1822-30
pubmed: 25375679
Acta Neuropsychiatr. 2007 Oct;19(5):304-10
pubmed: 26952943
Behav Res Ther. 2015 Aug;71:65-75
pubmed: 26073498
Clin Gastroenterol Hepatol. 2015 Oct;13(10):1828-1835.e1
pubmed: 24846278
Schmerz. 2015 Dec;29(6):649-57
pubmed: 26205682
Physiol Behav. 2021 May 1;233:113365
pubmed: 33600808
Psychophysiology. 2019 Nov;56(11):e13441
pubmed: 31332802