Reactive Nanoparticles Derived from Polysaccharide Phenyl Carbonates.
biocompatibility
dye functionalization
homogeneous synthesis
nanoparticles
polysaccharide derivatives
xylan derivatives
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
01 Jul 2021
01 Jul 2021
Historique:
received:
31
05
2021
revised:
25
06
2021
accepted:
26
06
2021
entrez:
19
7
2021
pubmed:
20
7
2021
medline:
20
7
2021
Statut:
epublish
Résumé
Polysaccharide (PS) based nanoparticles (NP) are of great interest for biomedical applications. A key challenge in this regard is the functionalization of these nanomaterials. The aim of the present work was the development of reactive PS-NP that can be coupled with an amino group containing compounds under mild aqueous conditions. A series of cellulose phenyl carbonates (CPC) and xylan phenyl carbonates (XPC) with variable degrees of substitution (DS) was obtained by homogeneous synthesis. The preparation of PS-NP by self-assembling of these hydrophobic derivatives was studied comprehensively. While CPC mostly formed macroscopic aggregates, XPC formed well-defined spherical NP with diameters around 100 to 200 nm that showed a pronounced long-term stability in water against both particle aggregation as well as cleavage of phenyl carbonate moieties. Using an amino group functionalized dye it was demonstrated that the novel XPC-NP are reactive towards amines. A simple coupling procedure was established that enables direct functionalization of the reactive NP in an aqueous dispersion. Finally, it was demonstrated that dye functionalized XPC-NP are non-cytotoxic and can be employed in advanced biomedical applications.
Identifiants
pubmed: 34279366
pii: molecules26134026
doi: 10.3390/molecules26134026
pmc: PMC8272227
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Macromol Biosci. 2015 Jun;15(6):735-46
pubmed: 25677921
Carbohydr Polym. 2019 Mar 1;207:782-790
pubmed: 30600065
Acta Biomater. 2021 Jan 15;120:293-303
pubmed: 32721577
Langmuir. 2013 Jul 16;29(28):8845-55
pubmed: 23777243
Carbohydr Polym. 2018 Aug 1;193:45-53
pubmed: 29773396
J Control Release. 2010 Jan 4;141(1):85-92
pubmed: 19699771
Chem Rev. 2016 Sep 28;116(18):11220-89
pubmed: 27552640
Carbohydr Polym. 2021 Jun 15;262:117944
pubmed: 33838821
Arch Toxicol. 2017 Oct;91(10):3271-3286
pubmed: 28378120
Pharm Res. 2004 Aug;21(8):1428-39
pubmed: 15359578
J Funct Biomater. 2019 Jan 08;10(1):
pubmed: 30626094
Biomacromolecules. 2008 May;9(5):1487-92
pubmed: 18393524
Bioconjug Chem. 2011 May 18;22(5):949-57
pubmed: 21476603
Macromol Biosci. 2014 Feb;14(2):161-5
pubmed: 24519785
Asian J Pharm Sci. 2017 Nov;12(6):532-541
pubmed: 32104366
Carbohydr Polym. 2018 May 15;188:252-259
pubmed: 29525163
J Nanopart Res. 2009 Aug;11(6):1251-1310
pubmed: 21170133
Biophys Rev. 2016 Dec;8(4):409-427
pubmed: 28510011
Cancer. 1972 Jan;29(1):117-21
pubmed: 4332311
Eur J Pharm Biopharm. 2007 Mar;65(3):259-69
pubmed: 17196803
J Control Release. 2021 Jan 10;329:717-730
pubmed: 33031880
Macromol Biosci. 2020 Apr;20(4):e1900415
pubmed: 32090505
Macromol Biosci. 2012 Jul;12(7):920-5
pubmed: 22535832
Chem Soc Rev. 2006 Jul;35(7):583-92
pubmed: 16791330
Macromol Biosci. 2010 Feb 11;10(2):211-20
pubmed: 19904721
Adv Drug Deliv Rev. 2008 Dec 14;60(15):1650-62
pubmed: 18848591