Evolution of Subfamily I.1 Lipases in Pseudomonas aeruginosa.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 02 02 2021
accepted: 21 06 2021
pubmed: 20 7 2021
medline: 18 8 2021
entrez: 19 7 2021
Statut: ppublish

Résumé

The gram-negative Pseudomonas aeruginosa is an opportunistic human pathogen that contains two different types of strains: the "classical" and the "outlier". In the "classical" strain, its bacterial subfamily I.1 lipases, such as LipA and LipC in P. aeruginosa PAO1, play critical roles in its pathogenicity. However, less is known about the subfamily I.1 lipases in the "outlier" strain, nor the evolution paths of those lipases in both types of P. aeruginosa strains. Our genome-scale investigation on I.1 lipases across different bacterial strains demonstrates the presence of one LipA-like and one new type of I.1 lipase (LipC2) in those "outlier" strains. The related genomic islands analyses further suggest that the LipC counterpart gene in the "outlier" strain was lost by gene truncation. In addition, the evolutionary analyses also indicates the horizontal LipC2 gene transfer from other gammaproteobacterial species, as well as the horizontal LipA gene transfer between two different phyla, both suggesting that the gene transfer of bacterial I.1 lipases might occur in different taxonomical levels. Our results not only provide an evidence to understand the pathogenicity among different P. aeruginosa strains, but add to the knowledge of I.1 lipase evolution in bacteria.

Identifiants

pubmed: 34279672
doi: 10.1007/s00284-021-02589-4
pii: 10.1007/s00284-021-02589-4
doi:

Substances chimiques

Bacterial Proteins 0
Lipase EC 3.1.1.3

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3494-3504

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Klockgether J, Cramer N, Wiehlmann L et al (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:1–18. https://doi.org/10.3389/fmicb.2011.00150
doi: 10.3389/fmicb.2011.00150
Tielen P, Kuhn H, Rosenau F et al (2013) Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiol 13:159–170. https://doi.org/10.1186/1471-2180-13-159
doi: 10.1186/1471-2180-13-159 pubmed: 23848942 pmcid: 3733896
Georgescu M, Gheorghe I, Curutiu C et al (2016) Virulence and resistance features of Pseudomonas aeruginosa strains isolated from chronic leg ulcers. BMC Infect Dis 16:3–9. https://doi.org/10.1186/s12879-016-1396-3
doi: 10.1186/s12879-016-1396-3
Nardini M, Lang DA, Liebeton K et al (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. J Biol Chem 275:31219–31225. https://doi.org/10.1074/jbc.M003903200
doi: 10.1074/jbc.M003903200 pubmed: 10893416
Funken H, Knapp A, Vasil ML et al (2011) The lipase lipA (PA2862) but not lipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J Bacteriol 193:5858–5860. https://doi.org/10.1128/JB.05765-11
doi: 10.1128/JB.05765-11 pubmed: 21840975 pmcid: 3187233
Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317–326. https://doi.org/10.1046/j.1365-2958.1999.01601.x
doi: 10.1046/j.1365-2958.1999.01601.x pubmed: 10564475
Rosenau F, Isenhardt S, Gdynia A et al (2010) Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett 309:25–34. https://doi.org/10.1111/j.1574-6968.2010.02017.x
doi: 10.1111/j.1574-6968.2010.02017.x pubmed: 20546309
Rosenau F, Jaeger KE (2000) Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1023–1032. https://doi.org/10.1016/S0300-9084(00)01182-2
doi: 10.1016/S0300-9084(00)01182-2 pubmed: 11099799
Bofill C, Prim N, Mormeneo M et al (2010) Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA. Biochimie 92:307–316. https://doi.org/10.1016/j.biochi.2009.11.005
doi: 10.1016/j.biochi.2009.11.005 pubmed: 19944735
Sood U, Hira P, Kumar R et al (2019) Comparative genomic analyses reveal core-genome-wide genes under positive selection and major regulatory hubs in outlier strains of Pseudomonas aeruginosa. Front Microbiol 10:53–75. https://doi.org/10.3389/fmicb.2019.00053
doi: 10.3389/fmicb.2019.00053 pubmed: 30787911 pmcid: 6372532
Roy PH, Tetu SG, Larouche A et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE 5:1–10. https://doi.org/10.1371/journal.pone.0008842
doi: 10.1371/journal.pone.0008842
Sood U, Singh DN, Hira P et al (2020) Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J Biotechnol 307:98–106. https://doi.org/10.1016/j.jbiotec.2019.11.004
doi: 10.1016/j.jbiotec.2019.11.004 pubmed: 31705932
Sentausa E, Basso P, Berry A et al (2020) Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom 6:1–15. https://doi.org/10.1099/mgen.0.000265
doi: 10.1099/mgen.0.000265
Sullivan ER, Leahy JG, Colwell RR (1999) Cloning and sequence analysis of the lipase and lipase chaperone-encoding genes from Acinetobacter calcoaceticus RAG-1, and redefinition of a Proteobacterial lipase family and an analogous lipase chaperone family. Gene 230:277–285. https://doi.org/10.1016/S0378-1119(99)00026-8
doi: 10.1016/S0378-1119(99)00026-8 pubmed: 10216267
Ondov BD, Treangen TJ, Melsted P et al (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0997-x
doi: 10.1186/s13059-016-0997-x
Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239
doi: 10.1093/nar/gkz239
Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397. https://doi.org/10.1016/S0958-1669(02)00341-5
doi: 10.1016/S0958-1669(02)00341-5 pubmed: 12323363
Rosenau F, Tommassen J, Jaeger KE (2004) Lipase-specific foldases. ChemBioChem 5:152–161. https://doi.org/10.1002/cbic.200300761
doi: 10.1002/cbic.200300761 pubmed: 14760735
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
doi: 10.1093/nar/gkh340 pubmed: 15034147 pmcid: 390337
Minh BQ, Schmidt HA, Chernomor O et al (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 37:1530–1534. https://doi.org/10.1093/molbev/msaa015
doi: 10.1093/molbev/msaa015 pubmed: 7182206 pmcid: 7182206
Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285
doi: 10.1038/nmeth.4285 pubmed: 28481363 pmcid: 5453245
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z
doi: 10.1038/s41587-019-0036-z pubmed: 30778233
El-gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:427–432. https://doi.org/10.1093/nar/gky995
doi: 10.1093/nar/gky995
Bertelli C, Laird MR, Williams KP et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35. https://doi.org/10.1093/nar/gkx343
doi: 10.1093/nar/gkx343 pubmed: 28472413 pmcid: 5570257
Gabrielaite M, Johansen HK, Molin S et al (2020) Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. MBio 11:1–16. https://doi.org/10.1128/mBio.02359-20
doi: 10.1128/mBio.02359-20
Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039
doi: 10.1093/bioinformatics/btr039 pubmed: 21278367 pmcid: 3065679
Fu L, Niu B, Zhu Z et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. https://doi.org/10.1093/bioinformatics/bts565
doi: 10.1093/bioinformatics/bts565 pubmed: 23060610 pmcid: 3516142
Cazares A, Moore MP, Hall JPJ et al (2020) A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 11:1–13. https://doi.org/10.1038/s41467-020-15081-7
doi: 10.1038/s41467-020-15081-7
Cao H, Xia T, Li Y et al (2019) Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex. Antimicrob Agents Chemother 63:1–15. https://doi.org/10.1128/AAC.01944-18
doi: 10.1128/AAC.01944-18
Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328. https://doi.org/10.1038/nrmicro.2018.17
doi: 10.1038/nrmicro.2018.17 pubmed: 29479077 pmcid: 5972017
Calderón CE, Ramos C, De Vicente A, Cazorla FM (2015) Comparative genomic analysis of Pseudomonas chlororaphis PCL1606 reveals new insight into antifungal compounds involved in biocontrol. Mol Plant-Microbe Interact 28:249–260. https://doi.org/10.1094/MPMI-10-14-0326-FI
doi: 10.1094/MPMI-10-14-0326-FI pubmed: 25679537
Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665. https://doi.org/10.1016/S0140-6736(47)91528-6
doi: 10.1016/S0140-6736(47)91528-6 pubmed: 19680249 pmcid: 2766515
Battle SE, Rello J, Hauser AR (2009) Genomic islands of Pseudomonas aeruginosa. FEMS Microbiol Lett 290:70–78. https://doi.org/10.1111/j.1574-6968.2008.01406.x
doi: 10.1111/j.1574-6968.2008.01406.x pubmed: 19025565
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
doi: 10.1016/S0022-2836(05)80360-2
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:1–9. https://doi.org/10.1186/1471-2105-10-421
doi: 10.1186/1471-2105-10-421
Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389
doi: 10.1093/nar/25.17.3389 pubmed: 9254694 pmcid: 9254694
Mathee K, Narasimhan G, Valdes C et al (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105. https://doi.org/10.1073/pnas.0711982105
doi: 10.1073/pnas.0711982105 pubmed: 18287045 pmcid: 2268591
Redder P, Hausmann S, Khemici V et al (2015) Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 39:392–412. https://doi.org/10.1093/femsre/fuv011
doi: 10.1093/femsre/fuv011 pubmed: 25907111
Toutain-Kidd CM, Kadivar SC, Bramante CT et al (2009) Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA. Antimicrob Agents Chemother 53:136–145. https://doi.org/10.1128/AAC.00500-08
doi: 10.1128/AAC.00500-08 pubmed: 18955535
König B, Jaeger KE, Sage AE et al (1996) Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes). Infect Immun 64:3252–3258. https://doi.org/10.1128/iai.64.8.3252-3258.1996
doi: 10.1128/iai.64.8.3252-3258.1996 pubmed: 8757861 pmcid: 174215

Auteurs

Zhenghong Zhang (Z)

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. zzhong1984@alumni.sjtu.edu.cn.

Xuehong Zhang (X)

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH